Свойства масла: Основные свойства масел

Содержание

Основные свойства масел

Плотность и удельный вес 
Плотность вещества — это соотношение его массы к объему (кг/м3), а удельный вес — соотношение массы определенного объема вещества к массе соответствующего объема воды при 20°С. Плотность и удельный вес зависят от температуры. 

Вязкость 
Вязкость — это величина, которая характеризует текучесть жидкости. Вязкость зависит от температуры. Вязкостных единиц множество. Кинематическую вязкость в т.н. технической системе единиц измеряют в Стоксах (Ст) или сантистоксах (сСт), а в системе СИ (м2/с) или (мм2/с). Когда величину кинематической вязкости умножают на показатель плотности масла в температуре измерения, получают динамическую вязкость, единицей которой в технической системе является Пуаз (П). В системе СИ динамическую вязкость измеряют в Паскаль-секундах (Пас) или (Нс/м2). 

Индекс вязкости 
Он характеризует зависимость вязкости масла от изменения температуры. Чем больше индекс вязкости, тем меньше вязкость масла изменяется при колебании температуры. 

Температура вспышки 
При повышении температуры из масла выделяются пары, которые при поднесении открытого огня вспыхивают. Эта температура называется температурой вспышки, которую можно измерять либо в открытом (Cleveland), либо закрытом тигле (Pensky-Martens). 

Температура застывания 
Температура застывания — это самая низкая температура, при которой масло еще полностью не потеряло текучесть при наклонении пробирки, в которой его охладили. Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры, или кристаллизации парафина вместе с повышением вязкости в такой степени, что масло становится твердым.

Число нейтрализации 
В зависимости от базовых масел и присадок, а также эксплуатационных условий, в результате окисления в смазочных маслах содержатся кислотные и/или щелочные продукты. Общее щелочное число (TBN) или общее кислотное число (TAN) анализируются в лабораторных условиях. Величина этих показателей характеризует количество тех щелочных/кислых продуктов, которое требуется для нейтрализации масла. Кислотное число измеряется в (мг КОН/г) (миллиграмм гидроокиси калия на грамм масла). 

Технические характеристики моторных масел: свойства, вязкость

Характеристики моторных масел регламентируют стандарты международного уровня.

Вязкость моторного масла

Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:

  • кинематическая вязкость показывает способность материала сопротивляться течению под действием силы тяжести. Измеряется в стоксах (Ст) или в квадратных миллиметрах в секунду (мм2/с). Чаще всего характеристику определяют для температур 40 и 100 °С;
  • динамическая вязкость определяет отношение силы к скорости сдвига. Характеристика показывает способность моторного масла к течению при разных температурах, измеряется в сантипуазах (Сп) или в (Н·с/см2).

Индекс вязкости

Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.

Температура застывания

Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.

Температура вспышки

Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.

Щелочное число (Total Base Number, TBN)

Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала.

Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.

Зольность

Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию.

Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.

Стандарты и спецификации

SAE J300

Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.

Классы вязкости зимних моторных масел SAE J300

 

Низкотемпературная вязкость

Высокотемпературная вязкость

Класс

вязкости

SAE

CCS, МПа-с. Max, при темп.,°С

MRV, МПа-с, Max, при темп.,°С

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л

6 с-1,

 

 

 

Min

Max

0W

3250 при -30

30000 при -35

3,8

5W

3500 при -25

30000 при -30

3,8

10W

3500 при -20

30000 при -25

4,1

15W

3500 при -15

30000 при -20

5,6

20W

4500 при -10

30000 при -15

5,6

25W

6000 при -5

30000 при -10

9,3

Классы вязкости летних моторных масел SAE J300

Класс вязкости SAE

Высокотемпературная вязкость

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

Min

Max

8

4,0

6,1

1,7

12

5,0

7,1

2,0

16

6,1

8,2

2,3

20

6,9

9,3

2,6

30

9,3

12,5

2,9

40

12,5

16,3

2,9*

40

12,5

16,3

3,7**

50

16,3

21,9

3,7

60

21,9

26,1

3,7

* Для классов 10W40, 5W40, 10W40.

** Для классов 15W40, 20W40, 25W40, 40.

API

Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:

  • S – Service (spark ignition). Категория включает масла для бензиновых двигателей легковых автомобилей;
  • C – Commercial (compression ignition). В нее включена продукция для дизельных двигателей;
  • EC – Energy Conserving. Категория описывает энергосберегающие масла.

Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.

ILSAC

Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:

GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;

GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;

GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;

GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;

GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.

Знание основных характеристик необходимо для грамотного выбора моторного масла.

Свойства моторных масел – статья автотехцентра Ойл Сервис

Рассмотрим, какими же свойствами должно обладать хорошее масло, чтобы выполнять все функции, возложенные на него.

В двигателе внутреннего сгорания неизбежны высокотемпературные отложения. Умение их смывать – одно из важнейших свойств моторного масла. Но смыть недостаточно, частицы этих отложений необходимо измельчить и нейтролизовать. За это отвечают диспергирующие свойства масла.

Моюще-диспергирующие свойства

характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя, поддерживать продукты окисления и загрязнения во взвешенном состоянии. Чем выше моюще – диспергирующие свойства масла, тем больше нерастворимых веществ – продуктов старения может удерживаться в работающем масле без выпадения в осадок, и тем меньше нагаров и лакообразных отложений образуется на поверхности деталей. А вследствие этого – может достигаться более высокая допустимая температура в двигателе (степень форсирования ДВС).

В составах моторных масел в качестве моющих присадок используют сульфонаты, алкилфеноляты, алкилсалицилаты и фосфонаты кальция или магния. Рациональное сочетание этих зольных присадок друг с другом и с беззольными дисперсантами-присадками, обеспечивает уменьшение низкотемпературных отложений в двигателе и положительно влияет на скорость загрязнения масляных фильтров. Модифицированные термостойкие беззольные дисперсанты также способствуют уменьшению нагарообразования на поршнях и кольцах.

При работе ДВС на топливе с увеличенным содержанием серы, моющие присадки, повышающие в масле щелочное число, препятствуют образованию отложений на деталях двигателя путем нейтрализации кислот, образующихся из продуктов сгорания топлива.

Металлсодержащие моющие присадки повышают зольность масла, что может привести к образованию зольных отложений в камере сгорания, замыканию электродов свечей зажигания, преждевременному воспламенению рабочей смеси, прогару выпускных клапанов, снижению детонационной стойкости топлива. Поэтому сульфатную зольность моторных масел ограничивают верхним пределом. Ее допустимое значение зависит от типа и конструкции двигателя, расхода масла на угар, условий эксплуатации, (в частности, от вида применяемого топлива). Наименее зольные масла необходимы для смазывания двухтактных бензиновых двигателей, а также двигателей работающих на газе.

Антиокислительные свойства

в значительной степени определяют стойкость масла к старению. Условия работы моторных масел в двигателях настолько жестки, что предотвратить их окисление полностью практически не возможно.

Окисление масла приводит к росту его вязкости и коррозионности, склонности к образованию отложений, загрязнению масляных фильтров и другим неблагоприятным последствиям (затруднение холодного пуска, ухудшение прокачиваемости масла).

Значительно затормозить процессы окисления масла можно соответствующей очисткой базовых масел от нежелательных соединений, присутствующих в сырье, использованием синтетических базовых компонентов, а также введением эффективных антиокислительных присадок.

Окисление масла в двигателе наиболее интенсивно происходит в тонких пленках масла на поверхностях деталей, нагревающихся до высокой температуры и соприкасающихся с горячими газами (поршень, цилиндр, поршневые кольца, направляющие и клапаны). В объеме масло окисляется менее интенсивно, так как в поддоне картера, радиаторе, маслопроводах температура ниже и поверхность контакта масла с окисляющей газовой средой меньше.

На скорость и глубину окислительных процессов значительно влияют загрязнения неорганического происхождения, которые накапливаются в масле в результате изнашивания деталей двигателя, (соединения меди, железа и других металлов, образующиеся в результате коррозии деталей двигателя). Еще больше на окисление масла влияют попадающие в него продукты неполного сгорания топлива. Они проникают в масло вместе с газами, прорывающимися из надпоршневого пространства в картер.

Стойкость моторных масел к окислению, повышается введением в его состав антиокислительных присадок. Наилучший антиокислительный эффект достигается при добавлении в масло присадок, обладающих различным механизмом действия. В качестве антиокислительных присадок к моторным маслам применяют диалкил и диарилдитиофосфаты цинка, которые улучшают противоизносные и антикоррозионные свойства. Их часто комбинируют друг с другом и с беззольными антиокислителями. Довольно энергичными антиокислителями являются некоторые моюще-диспергирующие присадки, в частности, алкилсалицилатные и алкилфенольные.

Противоизносные свойства

моторного масла зависят от химического состава базового масла, общего состава присадок и вязкостно-температурных характеристик масла. Это в основном и определяет температурные пределы его применяемости (защита деталей от износа при холодном запуске двигателя и максимальных температурных нагрузках).

При работе на топливе с высоким содержанием серы, а также в условиях, способствующих образованию азотной кислоты из продуктов сгорания (газовые двигатели, дизели с высоким наддувом), важнейшей характеристикой способности масла является предотвращение коррозионного износа поршневых колец и цилиндров.
Множественность факторов, влияющих на износ деталей в ДВС и принципиальные различия режимов трения, затрудняют оптимизацию противоизносных свойств моторных масел. Придание маслу максимальной нейтрализующей способности и введение в его состав дитиофосфатов цинка, часто оказывается достаточным для предотвращения коррозионно-механического изнашивания и избежание задиров. Однако тенденция к применению маловязких масел, для достижения экономии топлива и уменьшения расхода на угар, требует улучшения противоизносных свойств масел. Это достигается введением специальных присадок, содержащих серу, фосфор, галогены, бор, а также беззольные дисперсанты, содержащие противоизносные фрагменты.

Большое влияние на износ оказывает наличие в масле абразивных загрязнений. Их наличие в свежем масле не допускается, а масло, работающее в двигателе, должно подвергаться очистке в фильтрах, центрифугах, сепараторах. Высокие диспергирующие свойства масла так же уменьшают вред, оказываемый действием абразивных частиц.

Антикоррозионные свойства

моторных масел зависят от состава базовых компонентов, концентрации и эффективности антикоррозионных, антиокислительных присадок и деактиваторов металлов. Антикоррозионные присадки защищают антифрикционные материалы , образуя на их поверхности прочную защитную пленку. Антиокислители препятствуют образованию агрессивных кислот, а присадки-деактиваторы предохраняют поверхности металлов от коррозионного разрушения. Минеральные масла из малосернистой нефти, с высоким содержанием парафиновых углеводородов, наиболее подвержены коррозионности в процессе старения. Их углеводороды, в ходе окисления, образуют органические кислоты, которые взаимодействуют с цветными металлами и их сплавами.

Вязкостно-температурные свойства

одна из важнейших характеристик моторного масла. От этих свойств зависит в каком диапазоне температур окружающей среды, данное масло сможет обеспечить запуск двигателя без предварительного подогрева, беспрепятственное прокачивание насосом по всей системе, надежное смазывание, очистка и охлаждение деталей двигателя при наибольших допустимых нагрузках.

Даже в умеренных климатических условиях, диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева, в подшипниках коленчатого вала или в зоне поршневых колец составляет от -30° до +150°С. Вязкость масел в этом интервале температур изменяется многократно.

Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают легкий запуск двигателя при температуре окружающей среды не ниже 0°С. В свою очередь зимние масла, обеспечивающие холодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год, или использовать так называемые «всесезонные» масла.

Вязкостно-температурные свойства «всесезонных» масел таковы, что при отрицательных температурах они подобны зимним, а в области высоких температур – летним. Вязкостные присадки относительно мало повышают вязкость базового масла при низкой температуре, но значительно увеличивают ее при высокой температуре.

В отличие от сезонных, «всесезонные» масла изменяют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастает, а с увеличением – снижается. Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: большее снижение вязкости в начале проворачивания холодного двигателя стартером, облегчая его запуск, а в прогретом двигателе, небольшое снижение вязкости масла в зазорах между поверхностями трения деталей, уменьшает потери энергии на трение и дает экономию топлива.

Характеристиками вязкостно-температурных свойств служат кинематическая вязкость, динамическая вязкость, а также индекс вязкости – безразмерный показатель пологости вязкостно-температурной зависимости, рассчитываемый по значениям кинематической вязкости масла, измеренной при 40° и 100°С. Синтетические базовые компоненты имеют индекс вязкости 120-150, что дает возможность получать на их основе всесезонные масла с очень широким температурным диапазоном работоспособности.

К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действием силы тяжести, т. е. теряет текучесть. Она должна быть на 5-7°С ниже той температуры, при которой масло должно обеспечивать прокачиваемость. В большинстве случаев застывание моторных масел обусловлено образованием в объеме охлаждаемого масла кристаллов парафинов.

Температура застывания масла

указывает только на возможность перелить масло из канистры в картер двигателя, не прибегая к предварительному подогреву. Однозначной взаимосвязи температуры застывания масла с его пусковыми свойствами на холоде не существует.

Температура вспышки

Если масло нагревать, то его пары образуют с воздухом смесь. Температуру, при которой эти пары способны воспламениться, называют температурой вспышки. Температура вспышки связана с фракционным составом масла и структурой молекул базовых компонентов. При прочих равных условиях высокая температура вспышки предпочтительна. Она существенно снижается по сравнению с исходным значением, если в процессе работы масло разжижается топливом из-за неисправностей двигателя. В сочетании со снижением вязкости масла, понижение температуры вспышки служит сигналом для поиска неисправностей системы подачи топлива, системы зажигания или карбюратора.

Сульфатная зольность

При сгорании масла образуется зола, которая, в свою очередь, состоит из солей и минералов, находящихся в масле во взвешенном состоянии. При очистке базового масла зольность должна быть минимальной и составляет порядка 0,005% и меньше. Однако, при введении необходимых для качественного масла присадок, зольность резко возрастает и достигает 1-1,5%. Сульфатная зольность масла в процессе работы двигателя, почти не изменяется и в нормативной документации ограничена верхним пределом. Это обусловлено тем, что излишне зольное масло может способствовать повышенному износу деталей, вследствие абразивного воздействия на поверхности трения, а также приводить к преждевременному воспламенению рабочей смеси из-за образования отложений в камере сгорания и неблагоприятно влиять на работоспособность свечей зажигания.

Базовые масла практически беззольны. Довольно высокая сульфатная зольность моторных масел в основном, обусловлена наличием в их составе моющих присадок, содержащих металлы. Эти присадки необходимы для предотвращения нагара и лакообразования на поршнях, кольцах, клапанах и придания маслам способности нейтрализовывать кислоты. Чем больше щелочное число, тем большее количество кислот, образующихся при окислении масла и сгорании топлива, может быть переведено в нейтральное соединение. В противном случае эти кислоты вызвали бы коррозионный износ деталей двигателя и усилили процессы образования различных углеродистых отложений. При работе масла в двигателе, щелочное число неизбежно снижается. Такое снижение имеет допустимые пределы, по достижении которых масло считается утратившим свою работоспособность. Поэтому, при прочих равных условиях, предпочтительнее масло у которого щелочное число выше.

www.maslo.od.ua

Свойства масел и методы их оценки (Вязкостно-температурные свойства)

Свойства масел и методы их оценки (Вязкостно-температурные свойства)

17.05.2012

Вязкостно-температурные свойства — одна из важнейших характеристик моторного масла. От этих свойств зависит диапазон температуры окружающей среды, в котором данное масло обеспечивает пуск двигателя без предварительного подогрева, беспрепятственное прокачивание масла насосом по смазочной системе, надежное  смазывание и охлаждение деталей двигателя при наибольших допустимых нагрузках и температуре  окружающей среды. Даже в умеренных климатических условиях диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева в подшипниках коленчатого вала или в зоне поршневых колец составляет до 180-190С. Вязкость минеральных масел в интервале температур от -30 до +150С изменяется в тысячи раз. Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают пуск двигателя при температуре окружающей среды около 0С. Зимние масла, обеспечивающие холодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год. Это усложняет и удорожает эксплуатацию двигателей. Проблема решена созданием всесезонных масел, загущенных полимерными присадками (полиметакрилаты, сополимеры олефинов, полиизобутилены, гидрированные сополимеры стирола с диенами и др.).

     

Вязкостно-температурные свойства загущенных масел таковы, что при отрицательных температурах они подобны зимним, а области высоких температур — летним. Вязкостные присадки относительно мало повышают вязкость базового масла при низкой температуре, что обусловлено увеличением объема макрополимерных молекул с повышением температуры и рядом иных эффектов.

    

В отличие от сезонных, загущенные всесезонные масла изменяют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастает, а с увеличением — снижается. Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: снижение вязкости в начале проворачивания холодного двигателя стартером облегчает пуск, а небольшое снижение вязкости масла в зазорах между поверхностями трения деталей прогретого двигателя уменьшает потери энергии на трение и дает экономию топлива.

     

Характеристиками вязкостно-температурных свойств служат кинематическая вязкость, определяемая в капиллярных вискозиметрах, и динамическая вязкость, измеряемая при различных градиентах скорости сдвига в ротационных вискозиметрах, а также индекс вязкости — безразмерный показатель пологости вязкостно-температурной зависимости, рассчитываемый по значениям кинематической вязкости масла, измеренной при 40 и 100С (ГОСТ 25371-82). В нормативной документации на зимние масла иногда нормируют кинематическую вязкость при низких температурах. Индекс вязкости минеральных масел без вязкостных присадок составляет 85-100. Он зависит от углеводородного состава и глубины очистки масляных фракций. Углубление очистки повышает индекс вязкости, но снижает выход рафината.

     

Синтетические базовые компоненты имеют индекс вязкости 120-150, что дает возможность получать на их основе всесезонные масла с очень широкими температурным диапазоном работоспособности.

     

К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действием силы тажести, т.е. теряет текучесть. Она должна быть на 5-7С ниже той температуры, при которой масло должно обеспечивать прокачиваемость. В большинстве случаев застывание моторных масел обусловлено образованием в объеме охлаждаемого масла кристаллов парафинов. Требуемая нормативной документацией температура застывания достигается депарафинизацией базовых компонентов и/или введением в состав моторного масла депрессорных присадок (полиметакрилаты, алкилнафталины и др.).

Технические характеристики моторных масел 🚗 Свойства масел для двигателей

Содержание:

Важность качественного моторного масла сложно переоценить: правильно подобранная смазочная жидкость необходима, чтобы машина исправно работала, а узлы не изнашивались раньше срока. Чтобы подобрать состав, который будет подходить под конкретные климатические условия, важно разбираться в характеристиках моторных масел. Грамотно выбранные параметры вязкости, зольности, плотности помогут определиться с составом, но главное, конечно, не связываться с недобросовестными производителями и покупать смазочную жидкость только у проверенных компаний.

Функции моторного масла

Основное назначение состава – смазывать двигающиеся детали, чтобы не допускать их трения друг о друга и преждевременного износа. Также масло отводит от механизмов тепло, не дает им перегреваться, а содержащиеся в составе присадки защищают от загрязнений и обладают моющими свойствами. Во многом особенности зависят от состава присадок: разные масла рассчитаны под разные условия, и это еще одна причина, по которой смазочную жидкость нужно подбирать с умом. В расчет берутся три параметра: характеристики самой машины, климатические условия, в которых ее владелец использует авто, и необходимый состав (минеральное, синтетическое или полусинтетическое и т. д.).

Требования к качественному маслу

Могут различаться в зависимости от региона и машины. Но основные требования остаются неизменными:

  • нейтральность по отношению к металлу. Иными словами, состав не должен провоцировать коррозию и ускорять разрушение деталей;
  • моющие и стабилизирующие свойства, которые в основном достигаются за счет присадок;
  • способность функционировать в нужном температурном диапазоне;
  • отсутствие пены при работе;
  • возможность охлаждать греющиеся детали, то есть хорошие термоокислительные и термические способности;
  • совместимость с материалами, из которых делают уплотнительные элементы. Важно, чтобы состав не был чересчур агрессивен к полимерам;
  • способность нейтрализовать кислоты и продлевать тем самым срок работоспособности двигателя;
  • низкая летучесть, небольшой расход;
  • возможность запускать мотор, в том числе из холодного состояния.

На что влияют технические характеристики

В зависимости от того, какими характеристиками и свойствами обладает смесь, можно судить, комфортно ли будет использовать ее в определенных условиях, скажем, зимой или, наоборот, в жаркое время года. Некоторые варианты больше подходят для одних особенностей конструкции, некоторые – для других. Вдобавок стоит смотреть на качество: и синтетическое, и минеральное масла могут хорошо работать, если выпущены грамотными производителями. В случае же, если состав разрабатывался некачественно, итоговых свойств может быть недостаточно для нормальной работы машины. Технические характеристики масла определяют:

  • когда им лучше пользоваться – летом, зимой или круглый год;
  • для каких двигателей оно подходит – бензиновых или дизельных.

Некоторые классы предназначены для тяжелонагруженных моторов или имеют повышенную совместимость с каталитическими нейтрализаторами.

Что входит в технические характеристики масла

Существует несколько классификаций, определяющих параметры смазочной жидкости. Они касаются особенностей применения, вязкости и типа двигателей, для которых предназначено масло. Однако классификация – отдельный вопрос. Если речь идет именно о характеристиках как о свойствах, выраженных количественно, то к ним обычно относят семь параметров:

  • динамическую и кинетическую вязкость;
  • температуру застывания;
  • температуру вспышки;
  • плотность;
  • зольность;
  • щелочное число.

Они описывают физические и химические свойства конкретного масла: именно на их основе смазочную жидкость относят к тому или иному классу по одной из классификаций.

Вязкость: кинетическая и динамическая

Это показатель, который говорит, насколько хороши смазывающие свойства масла. Более вязкая жидкость лучше смазывает, но хуже подходит для низких температур, потому что быстрее застывает. Более жидкие составы обычно используются на холоде или в условиях, когда масла с высокой вязкостью нельзя применять. Эта характеристика разделяется на две:

  • динамическая вязкость описывает поведение масла при холодном моторе, то есть демонстрирует, как оно будет вести себя зимой. Этот показатель даже не всегда указывают в таблицах характеристик, так как он напрямую связан с классом зимней вязкости. Указания класса обычно достаточно;
  • кинетическая же вязкость описывает работу масла во время, когда двигатель включен. Рассчитывается, как правило, для температуры в 100 градусов, и чем больше цифра, тем лучше.

Классификация SAE

Этот международный стандарт делит моторные масла на группы в зависимости от их вязкости и температурных пределов, для которых они предназначены. Согласно этой классификации смазочные жидкости бывают трех основных типов:

  • летние. Класс обозначается одним числом, чем оно выше, тем гуще масло;
  • зимние. Их легко узнать: обозначение – число, после которого указана буква W. Она означает winter – зима. Чем меньше числовое значение, тем более жидким является масло и, соответственно, тем при более низких температурах его можно использовать;
  • всесезонные. Обозначаются сдвоенным значением: первое – зимнее, с буквой W, второе – летнее. По соотношению чисел можно определить температурный диапазон, при котором смазочная жидкость будет нормально функционировать.

Индекс вязкости

Это численное значение, которое не говорит о вязкости как таковой: оно обозначает, как сильно она меняется с перепадами температуры. Этот параметр во многом определяет качество масла: в идеале оно должно как можно меньше менять свои свойства, когда меняется температурный режим. В реальности такое недостижимо, но современные синтетические масла достигают значения индекса в 150–180 единиц. Чем выше этот показатель, тем лучше: высокие значения говорят о том, что жидкость не слишком активно изменяется при смене температурного режима и сохраняет свои свойства.

Температура застывания и вспышки

Существуют температурные пределы, при которых масло полностью перестает функционировать. Нижний называется температурой застывания, ее достижение означает, что масло потеряло текучесть и застыло. Де-факто функционировать оно может перестать раньше: еще до застывания текучесть станет настолько низкой, что смазочная жидкость перестанет прокачиваться через фильтр. Обычно это происходит за 5–7 градусов Цельсия до достижения температуры застывания. Грамотные производители учитывают такую возможность при определении класса масла: даже при температурных значениях, близких к минимуму, смесь еще будет прокачиваться. Верхний же предел называется температурой вспышки. Это температурное значение, при котором масла испарится настолько много, что, если рядом окажется источник огня, пары загорятся. Обычно оно выше 200 градусов и недостижимо, если с машиной все в порядке, но показатель позволяет понять скорость испарения масла даже в нормальных условиях. Чем ниже температура вспышки, тем активнее испаряется жидкость.

Плотность

Каждое масло содержит определенное количество летучих фракций. Их объем и определяет плотность – параметр, влияющий на качество работы смазочной жидкости.

  • Высокоплотные составы обычно гуще, они снижают механическую нагрузку на узлы, но при слишком высоком значении плотности могут плохо проникать в труднодоступные места цилиндров.
  • Масла со слишком низкой плотностью не так хорошо справляются со своей работой, как с оптимальной.

Обычно чем выше температура вспышки, тем выше и плотность, но бывают и исключения – высококачественные синтетические масляные основы. Они могут обладать оптимальными значениями обоих параметров одновременно.

Зольность и щелочное число

Технические характеристики моторного масла описывают не только физический, но и химический его состав, к таким можно отнести показатель сульфатной зольности и щелочное число.

  • Зольность иногда считают показателем количества присадок в смазочной жидкости, но в действительности этот параметр не всегда коррелирует с ними. Он показывает, сколько золы остается после испарения масляной основы или ее сгорания. Зола часто содержит в себе сульфаты, которые могут быть вредны для каталитических нейтрализаторов, но в целом показатель зольности критичнее для топлива, чем для масла.
  • Щелочное число показывает, какому количеству гидроксида калия эквивалентны присадки в масле, направленные на нейтрализацию кислот. По сути, показатель демонстрирует, как долго смазочная жидкость сможет избегать окисления.

На что обратить внимание при выборе масла

Помимо основных параметров – для бензина или для дизеля предназначен состав, какой пакет присадок в нем используется – нужно обращать внимание на технические характеристики и сопоставлять их с реальными условиями.

Жителям холодных регионов высокая вязкость не принесет пользы, а жарких, наоборот, сослужит хорошую службу. Если Вы хотите, чтобы масло работало дольше, обращайте внимание на показатели зольности и щелочное число. И, конечно, пользуйтесь продуктами проверенных производителей: «Синтек» предлагает качественную и разнообразную продукцию. В нашем ассортименте минеральные, синтетические, полусинтетические масла с разными характеристиками, подходящими под различные условия использования.

Предложение SINTEC

  • SINTEC PLATINUM SAE 5W-40 API SN/CF

    Синтетическое масло с высокими эксплуатационными характеристиками, подходящее для всех сезонов и содержащее пакет многофункциональных качественных присадок зарубежных производителей.

  • SINTEC LUX SAE 5W-40 API SL/CF

    Универсальный продукт, подходящий и для бензиновых, и для дизельных двигателей. Подходит в том числе грузовикам, машинам отечественного и зарубежного производства.

  • SINTEC EURO SAE 15W-40 API SJ/CF

    Пример качественного минерального масла с характеристиками, подходящими для использования в российских условиях, и пониженным расходом.

Классификация моторных масел по SAE: вязкостно-температурные свойства масел

Содержание статьи:

Классификация моторных масел по вязкостно-температурным свойствам по системе SAE J300 (SAE – Society of Automotive Engineers, общество автомобильных инженеров США) является общепринятой в мире. Она делит смазочные материалы на зимние и летние. В линейке моторных масел Sintec представлена продукция различных классов вязкости по SAE для машин и механизмов любых типов.

Вязкостно-температурные свойства масел

Классификация масел по SAE основана на прямой зависимости между температурой и вязкостью смазочного материала. Что такое вязкость? Это характеристика масла, которая показывает его способность к образованию пленки на поверхностях трущихся элементов. Чем выше вязкость, тем толще слой масла и тем ниже износ деталей. В то же время слишком вязкие материалы увеличивают потери энергии на трение. Это приводит к повышению расхода топлива и затрудняет пуск мотора.

Вязкость – не постоянная величина. В зависимости от температуры материала ее значение может изменяться в тысячи раз. При охлаждении масла вязкость увеличивается, при нагревании – снижается. Например, смазки низкого качества в летнюю жару разжижаются, теряют способность к образованию стойкой пленки. В итоге ускоряется износ внутренних деталей двигателя в результате трения. Зимой, при низкой температуре, вязкость смазочного материала возрастает. Жидкость становится густой и не прокачивается по шлангам вплоть до их закупорки.

Поэтому при выборе масла важно учитывать его вязкостно-температурные характеристики по SAE, а именно:

  • требования производителя транспортного средства к свойствам технических жидкостей;
  • температурный диапазон эксплуатации автомобиля;
  • техническое состояние машины, которое определяет требования к свойствам масла и параметрам смазочной пленки.

Принцип классификации SAE J300

Система SAE делит смазочные материалы на две группы: летние и зимние. Первые не имеют специального обозначения, а вторые маркируются буквой W (winter). Для жидкостей обеих групп определяют следующие показатели:

  • минимальное значение кинематической вязкости при температуре 100 °С. Система SAE устанавливает допустимый диапазон значений. Испытания проводят по методике ASTM D 445;
  • показатель HTHS – High Temperature High Shear Rate. Характеристика определяет устойчивость пленки к сдвиговым деформациям при высокой температуре. Показатель позволяет понять, насколько конкретная марка масла пригодна к работе в зоне экстремального повышения температур, насколько стабильными являются его вязкостные характеристики. Методика испытаний – ASTM D 468з.

Принципы классификации зимних масел по SAE

Зимние масла подвергают дополнительному тестированию в холодных условиях:

  • тест CCS (Cold Cranking Simulator). Испытания проводят по методике ASTM D 2602, имитируя холодный пуск двигателя. По результатам тестирования определяют максимальную динамическую вязкость масла, которая обеспечит проворачиваемость коленчатого вала. Испытания проходят при низких температурах, допустимых для материалов конкретного класса SAE;
  • тест MRV (Mini Rotary Viscometer). Определяют значение динамической вязкости, при котором масло будет прокачиваться по системам автомобиля. Испытания проводят при допустимых температурах для конкретного класса по SAE. Методики тестирования – ASTM D 4684 и D 3829.

Преимущества классификации моторных масел по SAE

Разделение моторных масел по SAE J300 на летние и зимние сорта позволяет максимально приблизить свойства каждого смазочного материала к реальным условиям эксплуатации. Летние масла имеют достаточную вязкость при высоких температурах. Они надежно смазывают трущиеся поверхности в зоне нагрева, но при охлаждении становятся слишком густыми. Зимние моторные масла маловязкие. При отрицательных температурах они облегчают пуск, но летом в жару не могут дать стабильную и прочную пленку.

Классификация материалов по SAE помогает выбрать масло, подходящее для конкретных условий эксплуатации. Система учитывает основные характеристики материалов в различных температурных диапазонах.

Компания «Обнинскоргсинтез» выпускает летние, зимние и универсальные масла по SAE J300. Наша продукция соответствует требованиям международного стандарта. Универсальные масла обеспечивают стабильную работу двигателя при низких температурах и эффективно защищают его от износа летом при работе в режиме повышенных нагрузок. Всесезонные смазочные материалы в меньшей степени зависят от времени года.

Характеристики моторных масел по SAE

Классы вязкости моторных масел SAE J300
Параметры Низкотемпературная вязкость Высокотемпературная вязкость
Класс
вязкости
SAE
CCS, МПа-с. Max, при темп., °С MRV, МПа-с, Max, при темп., °С Кинематическая вязкость,
мм2/при 100 °С
HTHS, МПа-с. Min
при 150 °С и скорости сдвига 106 с-1, min
Min Max
Зимние классы 0W 3250 при-30 30000 при-35 3,8
5W 3500 при-25 30000 при-30 3,8
10W 3500 при-20 30000 при-25 4,1
15W 3500 при-15 30000 при-20 5,6
20W 4500 при-10 30000 при-15 5,6
25W 6000 при-5 30000 при-10 9,3
8 4,0 6,1 1,7
12 5,0 7,1 2,0
Летние классы 16 6,1 8,2 2,3
20 6,9 9,3 2,6
30 9,3 12,5 2,9
40 12,5 16,3 2,9*
40 12,5 16,3 3,7**
50 16,3 21,9 3,7
60 21,9 26,1 3,7
* для классов 10W40, 5W40, 10W40
** для классов 15W40, 20W40, 25W40, 40
 

Моторные масла SAE от производителя

Компания «Обнинскоргсинтез» производит моторные масла под торговой маркой Sintec. Мы сами разрабатываем и совершенствуем рецептуры материалов, поэтому гарантируем их высокое качество. Характеристики линейки Sintec соответствуют допускам крупнейших мировых автоконцернов.

Преимущества моторных масел от производ​ителя:

  • гарантия оригинальности продукции, соответствия фактических характеристик заявленным значениям;
  • наличие сертификатов и других сопроводительных документов;
  • выгодные цены без переплат.

По вопросам сотрудничества с АО «Обнинскоргсинтез» звоните по телефону, указанному на сайте. Ближайший отдел розничной продажи вы найдете на странице «Где купить».

Моторное масло. Классификация API и группы качества — Что такое Моторное масло. Классификация API и группы качества ?

Моторное масло — это смесь 2 основных компонентов — базового масла и пакета присадок

ИА Neftegaz.RU. Моторное масло — это смесь 2 основных компонентов — базового масла и пакета присадок.

Применение терминов «Синтетика», «Полусинтетика» либо «Минеральное масло» подразумевает тип базового масла, которое было использовано в производстве смазочного материала.

Само базовое масло делится на группы:

1 группа — это базовое масло, полученное путем очистки нефти реагентами, данная группа содержит в себе много серы и имеет слабые показатели индекса вязкости (зависимость вязкости от температуры). 
Терминология — «Минеральное масло».

2 группа — это масла очищенные водородом (гидрокрекинг). 
Масло данной группы почти не содержат серы, при производстве, до момента добавления присадок, представляют из себя практически прозрачную жидкость, за счет чего срок службы самого смазочного материала существенно увеличивается, а уменьшение отложений и нагара в двигателе существенно увеличивает его ресурс. 
Терминология -«Минеральное масло». 3 группа — это по сути то же масло 2 группы, но с увеличенным индексом вязкости. 
Индекс вязкости масла  — это показатель, который фиксирует изменение вязкости в зависимости от температуры. 
Путем дополнительных процессов изомеризации масла получают лучшие показатели как низко-, так и высокотемпературной вязкости, что позволяет быть уверенным в смазочном материале как при запуске в самый сильный мороз, так и при эксплуатации при максимальных нагрузках.
Терминология — «Синтетика».

4 группа — это масло на основе полиальфаолефинов. 
Из-за высокой стоимости производства и после открытия технологий гидрокрекинга и изомеризации (2 и 3 группа базового масла), позволяющих производить базовое масло, ничем не уступающие им по качеству, объемы производства данной группы постепенно снижаются.

Смешение 3 или 4 групп базового масла с 1 или 2 группой базового масла — «Полусинтетика». При смешении 3 или 4 групп базового масла с 1 группой получается «Полусинтетика» увеличенным показателем по сере и иным элементам, что негативно отражается на ресурсе двигателя.

Классификация базового масла Американским институтом нефти (API).

Всего 5 групп (API 1509, Приложение E). Группа IV содержит полностью синтетическое базовое масла из полиальфаолефинов. Группа V для всего другого базового масла, не включенного в группы I — IV.

Группа 1. Произведено из сырой нефти
Масло классифицируются, как состоящее из насыщенных молекул менее чем на 90%.
В них много серы > 0,03%.
Диапазон вязкости 80 — 120.
Температурный диапазон для этого масла 0°С — 65°С.
Базовое масло 1 группы рафинируют с помощью растворителей — это самый простой и дешевый процесс очистки.
Именно поэтому масло из этой группы является самым дешевым базовым маслом на рынке.

Группа 2. Произведено из сырой нефти
Базовое масло группы 2 состоит на 90 % из насыщенных молекул.
В них серы < 0,03 % и индекс вязкости 80 — 120.
Углеводородные молекулы этого масла являются насыщенными, поэтому базовое масло группы 2 обладает лучшими антиокислительными свойствами, более прозрачное.
Это масло очень распространено на рынке сегодня, и стоит не намного дороже чем масло группы 1.

Группа 3. Произведено из сырой нефти
Базовое масло 3 группы состоят больше, чем на 90% из химически стабильных, насыщенных водородом молекул.
Содержание серы < 0,03% а индекс вязкости > 120 ед. Это масло очищено намного лучше чем базовое масло 2 группы благодаря процессу гидрокрекинга.
Этот длительный процесс специально предназначен для получения максимально чистого базового масла из нефти.

Группа 4. Полностью синтетические
Это базовое масло полиальфаолефины (PAO).
Производятся методом синтезирования.
Имеет более широкий диапазон рабочих температур чем масло из групп 1-3 и подходят для использования экстремально холодных условиях и для высоких температур.


Группа 5 Полностью синтетические
Базовое масло группы 5 — это все остальное базовое масло, включая силикон, фосфатный эфир, полиалкиленгликоль (PAG), полиэфиры, биосмазки и т.д.
Это базовое масло используют в комплексе с другим базовым маслом для улучшения свойств смазки.
Эфиры применяют в виде добавки к базовому маслу для улучшения свойств базового масла.
Смесь эфирного масла с полиальфаолефинами (PAO) работает при более высоких температурах, обеспечивают лучшую моющую способность и увеличенный срок использования.

Классификация моторных масел API появилась в 1947 г. по инициативе Американского института нефти ( American Petroleum Institute).
Классификация смазочных материалов была проведена согласно уровню их функциональных свойств, введены новые стандарты согласно требованиям американского авторынка.
API совместно с SAE разработали эту классификацию, разделив различные категории масел начиная с 1947 г. и до настоящего момента согласно их характеристикам и типам применяемых двигателей. 
Количество категорий не ограничено и институт API вводит новые категории каждый раз, когда автомобильный рынок выдвигает новые требования к моторным маслам.

Условные обозначения:

  • 1я буква обозначает применение смазочных материалов:
    — масла для бензиновых двигателей обозначаются буквой S
    — масла для дизельных двигателей — буквой C.
  • 2я буква обозначает уровень свойств моторного масла. 

Классификация моторного масла API для бензиновых двигателей

SE *** Бензиновые двигатели 1972. Те же требования к моторному маслу, что и для категории SD, но лучше защита двигателя.
SF *** Бензиновые двигатели  1980. Те же требования, что и для категории SE, но улучшена защита от износа и окислительная стабильность.
SG *** Бензиновые двигатели 1988. Те же требования, что и для категории SF, но лучше защита от износа, образования шлама и окисления масла.
SH *** Бензиновые двигатели 1993. Те же требования, что и для категории SG, но вводится система лицензирования и записи результатов всех моторных тестов и формул с целью гарантии качества. Символ API, который свидетельствует о дейсвтительном соответствии уровню SH помещается на этикетки канистр.
SJ Бензиновые двигатели 1996. Те же требования, что и для категории SH (включая лицензию и систему сертификатов) с лучшей защитой от окисления масла при высоких температурах и забивания катализатора.   
Начиная с  01/08/97, уровень SJ официально заменяет SH.
SL Бензиновые двигатели 2001. Новые тесты на степень износа  (Seq IVA), моющие свойства моторного масла (TEOST MHT4), окисление (Seq IIIF) и низкотемпературные отложения (Seq VG)  для лучшей защиты двигателя и продления интервала замены масла. Стандарт SL заменил  API SJ в середине 2001г.
SM Бензиновые двигатели 2004. Улучшены общие свойства для максимально-расширенного интервала замены масла. Ужесточен тест на высокотемпературные отложения (TEOST), новый тест на окисление (Seq. IIIG).
SN Бензиновые двигатели 2010. Представлен в октябре 2010 г. Разработан для автомобилей 2011 года выпуска и более ранних. Улучшенная защита от высокотемпературных отложений на поршнях. Более жесткие требования к контролю сажи и совместимости с уплотнителями.

*** устаревшие классификации, подобно APISA, APISB, APISC и APISD.

Классификация моторного масла API ДЛЯ 2-тактных двигателей 

Классификация API для 2-тактных двигателей имеет 4 уровня: TA, TB, TC для наземных транспортных средств и TD для использования на лодочных 2-тактных двигателях. 
Производители рассматривают данную классификацию моторных масел как устаревшую. Более новая — признанная японская спецификация JASO. Международная спецификация ISO базируется на данной японской спецификации, опубликованной в 1997г.

Классификация API для дизельных двигателей.

CE * «Требовательные» коммерческие дизельные двигатели (1987).Очень жесткие условия эксплуатации для нагруженных дизельных двигателей. Соответствует CD, усиленная защита от износа и высокотемпературных отложений, лучший контроль за окислением и расходом масла.
CF-4 * «Требовательные» коммерческие дизельные двигатели (1991).Те же требования, что и для категории CE, но усиленная защита против отложений на поршнях и высокого расхода масла.
CF Дизельные двигатели с непрямым впрыском (1994). Масла для строительной и карьерной техники, а также для двигателей, использующих дизельное топливо с высоким содержанием серы (>0.5%). Могут быть использованы вместо API CD. Иногда используются в дизельных двигателях для пассажирского транспорта.  
CG-4 Коммерческие дизельные двигатели, работающие в под тяжелыми нагрузками (развитие API CF-4, 1995). Масла для двигателей, соответствующих ограничениям по выхлопам в  США 1994 г. (дизельное топливо с содержанием серы ≤ 0.05%).  Могут быть использованы с дизельным топливом, содержащим серу в количестве до 0,5%).
CH-4 Дизельные двигатели под очень высокими нагрузками, удовлетворяющие стандартам по выхлопам США (1998). Масла, соответствующие требованиям США 1998г. для двигателей с пониженным уровнем выхлопов, специально разработаны для дизельного топлива с содержанием серы не более 0,5%. Особенно эффективны в борьбе с коррозией, износом, сажей и окислением. Высокая сдвиговая стабильность и устойчивость к вспениванию. Продлевают срок службы двигателей, эксплуатируемых в самых разнообразных условиях. Перекрывая требования предыдущих стандартов, данные масла достаточно гибко могут быть использованы в разнородных парках техники.
CI-4

Дизельные двигатели под очень высокими нагрузками (2002). Масла для последних дизельных двигателей с пониженным выхлопом, перекрывает требования CH-4. Особенно подходит для оборудования, работающего на дизельном топливе с очень низким содержанием серы (менее 0,5%). Ужесточенные требования к свойствам масел и одновременное увеличение интервала замены масла в 2 раза. Увеличение срока службы двигателя. Также принимается во внимание более строгие требования к работе с системами доочистки выхлопных газов.

Новая версия, названная API CI-4 Plus была опубликована в 2004г. с целью улучшить совместимость с системами EGR

CJ-4 Представлена в 2006г для 4-тактных высокоскоростных двигателей, удовлетворяющих требованиям к выхлопам 2007 года. Эти масла были разработаны для двигателей, оснащенных сажевыми фильтрами и рассчитанных на использование дизельного топлива с содержанием серы до 0,05%. Могут быть использованы вместо масел стандартов API CF-4, CG-4, CH-4, CI-4 и CI-4 Plus

* устаревшие спецификации, ровно как и API CA, API CB, API CC and API CD. CF и CG-4.

Классификация API для 2-тактных дизельных двигателей.

CD-II 2-тактные дизельные двигатели, работающие в сложных условиях (1988). Улучшенная защита от износа и отложений. Удовлетворяет требованиям уровня CD.
CF-2 2-тактные дизельные двигатели, работающие в сложных условиях (1994). Более жесткие требования, чем API CD-II. Усиленная защита от износа поршневых колец и цилиндров.

Классификация API трансмиссионного масла

API-GL-1
Минеральное трансмиссионное масло без присадок или с антиокислительными и противопенными присадками без противозадирных компонентов для применения, среди прочего, в коробках передач с ручным управлением с низкими удельными давлениями и скоростями скольжения. 
Цилиндрические, червячные и спирально-конические зубчатые передачи, работающие при низких скоростях и нагрузках.

API-GL-2
Червячные передачи, работающие в условиях GL-1 при низких скоростях и нагрузках, но с более высокими требованиями к антифрикционным свойствам. 
Может содержать антифрикционный компонент.

API-GL-3
Трансмиссионное масло с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. 
Применяется предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов, пассажиров и для нетранспортных работ. 
Обладают лучшими противоизносными свойствами, чем GL-2.

API-GL-4
Трансмиссионное масло с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. 
Применяется предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов и пассажиров и для нетранспортных работ.

API-GL-5
Масло для гипоидных передач с уровнем эксплуатационных свойств MIL-L-2105 C/D. 
Применяется предпочтительно в передачах с гипоидными коническими зубатыми колесами и коническими колесами с круговыми зубьями для главной передачи в автомобилях и в карданных приводах мотоциклов и ступенчатых коробках передач мотоциклов. 
Специально для гипоидных передач с высоким смешением оси. 
Для самых тяжелых условий эксплуатации с ударной и знакопеременной нагрузкой.

Классификация ACEA

Классификация моторного масла AСEA адаптирована под новые технологии, принимающие во внимание Европейские требования к защите окружающей среды. 
Начиная с 1996 г. было издано несколько версий стандартов AСEA.
Соблюдение требований ACEA 2008 является обязательным условием с декабря 2010г.
Версия ACEA 2008 определяет:
— 4 категории бензиновых и дизельных двигателей (A1/B1, A3/B3, A3/B4, A5/B5), 
— 4 категории автомобилей с системами доочистки выхлопных газов (C1, C2, C3, C4), 
-4  категории дизельных двигателей, используемых на тяжелой технике (E4, E6, E7, E9), 2 из которых относятся к тяжелым транспортным средствам, оснащенным системами доочистки выхлопных газов DPF или CRT (E6, E9).

Категория А/B:
A – бензиновые двигатели
B – дизельные двигатели

  Без экономии топлива Экономия топлива
Увеличенный интервал замены A3 / B4 A5 / B5
Стандартный  интервал замены A3 / B3 A1 / B1

Категория C:
Двигатели с системами доочистки выхлопных газов

  Без экономии топлива Экономия топлива
Низкое содержание SAPS С4 С1
Среднее содержание SAPS С3 С2

Описание требований ACEA 2008 к маслам категории Low SAPS (низкое содержание серы, фосфора и сульфатных зол)

Характеристики Показатели Экономия топлива Класс

Высокая экономия топлива
Низкое содержание SAPS

2.9 ≤ HTHS
P ≤ 0.05 %;
S ≤ 0.2%,
CS ≤ 0.5 %

> 3%

С1

Высокая экономия топлива
Среднее содержание SAPS

2.9 ≤ HTHS
0.070 % ≤ P≤ 0.090 %,
S ≤ 0.3 %,
CS ≤ 0.8 %

> 2.5%

С2

Стандартная экономия топлива
Среднее содержание SAPS

HTHS ≥ 3.5
0.070 % ≤ P≤ 0.090 %,
S ≤ 0.3 %,
CS ≤ 0.8 %

> 1%
(вязкость xW-30)

С3

Сатндартная экономия топлива
Низкое содержание SAPS

HTHS ≥ 3.5
Пониженная летучесть (≤11%)
P≤ 0.090%, S ≤ 0.2%, SA ≤ 0.5%

> 1%
(вязкость xW-30)

С4

HTHS — вязкость масла в условиях высокой скорости сдвига и высокой температуры.

 

Классификация ACEA для тяжелой техники

Низкое содержание SAPS

Среднее содержание SAPS

Расширенный интервал замены

E6 E4
TBN ≥ 12%

Стандартный интервал замены

E9 E7
TBN ≥ 9.0%

TBN — щелочное число


Классификация моторного масла SAE J300

Классификация SAEJ 300 используется для характеристики вязкости (сопротивления течению) масла при высоких и низких температурах.
SAE: Society of Automotive Engineers (Общество автомобильных инженеров, США).

ASTM

Класс вязкости по SAE Низкотемпературная вязкость Высокотемпературная вязкость
  Проворачивание 1), МПа*сек, max при температуре,
°С
Прокачиваемость 2), МПа*сек, max при температуре,
°С
Кинематическая вязкость 3), мм2/сек при 100 °С При высокой скорости сдвига 4), МПа*сек, при 150 °С и 106 с-1, min
      min max  
0W 6200 при -35 60000 при -40 3,8 - -
5W 6600 при -30 60000 при -35 3,8 - -
10W 7000 при -25 60000 при -30 4,1 - -
15W 7000 при -20 60000 при -25 5,6 - -
20W 9500 при -15 60000 при -20 5,6 - -
25W 13000 при -10 60000 при -15 9,3 - -
20     5,6 9,3 2,6
30     9,3 12,5 2,9
40     12,5 16,3 2,9
(0W-40,
5W-40,
10W-40)
40     12,5 16,3 3,7
(15W-40, 20W-40,
40)
50     16,3 21,9 3,7
60     21,9 26,1 3,7

1. ASTMD 2602 – имитатор холодного пуска CCS
2. ASTMD 4684 и D 3829 – мини-ротационный вискозиметр MRV
3. ASTMD 445 – стеклянный капиллярный вискозиметр
4. ASTMD – конический имитатор подшипника HTHS

Пример: SAE 15W- 40

15W — Низкотемпературный класс вязкости.
Буква « W » означает winter (зима)
Чем ниже класс, тем ниже температура возможного старта двигателя
40 — Высокотемпературный класс
Чем выше класс, тем выше температура, которую может выдержать масло (защита двигателя при высоких рабочих температурах).

SAE xxW-yy  — Всесезонное масло, например Quartz 9000 5W-40
SAE xxW  или SAE yy – Сезонное масло, например Rubia S 10W 

Сезонные масла, в основном, используются там, где нет сильных перепадов температуры и среднегодовая температура достаточно высокая. Всесезонные масла предлагаются как с зимней, так и с летней степенью вязкости.

Свойства нефтяного флюида — PetroWiki

В идеале свойства флюида, такие как давление насыщения, соотношение газ / нефть раствора, коэффициент объема пласта и другие, определяются на основе лабораторных исследований, разработанных для дублирования интересующих условий. Однако экспериментальные данные довольно часто недоступны, потому что репрезентативные образцы не могут быть получены или продуктивный горизонт не оправдывает затрат на углубленное изучение пластового флюида. В этих случаях свойства давление-объем-температура (PVT) должны определяться по аналогии или с использованием корреляций, полученных эмпирическим путем.На этой странице представлены эти корреляции и приведены ссылки на более подробные вычисления.

Свойства масла

Подсчет запасов в нефтяном пласте или определение его характеристик требует знания физических свойств флюида при повышенных давлении и температуре. Первостепенное значение имеют давление насыщения, газовый фактор (газовый фактор) раствора и коэффициент объема пласта (FVF). Кроме того, вязкость и межфазное или поверхностное натяжение должны быть определены для расчетов, включающих поток нефти через трубу или пористую среду.

Ключевые свойства нефти, которые обычно необходимы для понимания коллектора и его продуктивности:

Таблица 1 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ) [20] [21] [22] [23] [24] [25] [26] [27] [28] обобщены рекомендуемые методы для определение общего использования каждого имущества.Эти рекомендации основаны на эффективности корреляции, полученной на основе общего набора данных, или на опыте автора, полученном при использовании различных корреляций в течение нескольких лет.

При выборе подходящих методов для выполнения расчетов для конкретного коллектора важно учитывать характеристики самой сырой нефти — ее плотность, содержание асфальтенов или парафинов и т.д. обсуждение каждого свойства.

Список литературы

  1. ↑ Ласатер, Дж. А. 1958. Корреляция давления в точке пузыря. J Pet Technol 10 (5): 65–67. SPE-957-G. http://dx.doi.org/10.2118/957-G.
  2. ↑ Аль-Шаммаси, A.A. 2001. Обзор корреляций между давлением точки пузыря и объемным фактором нефтедобычи. SPE Res Eval & Eng 4 (2): 146-160. SPE-71302-PA. http://dx.doi.org/10.2118/71302-PA
  3. ↑ Веларде, Дж., Близингейм, Т.А., и Маккейн-младший, У.Д. 1997. Корреляция свойств мазута при давлениях ниже давления пузыря — новый подход.Представлено на ежегодном техническом совещании CIM, Калгари, Альберта, 8–11 июня. ПЕТСОК-97-93. http://dx.doi.org/10.2118/97-93
  4. ↑ Аль-Мархун, М.А. 1992. Новые корреляции для объемных факторов образования нефтегазовых смесей. J Can Pet Technol 31 (3): 22. PETSOC-92-03-02. http://dx.doi.org/10.2118/92-03-02
  5. ↑ Frashad, F., LeBlanc, J.L., Garber, J.D. et al. 1996. Эмпирические корреляции PVT для колумбийской сырой нефти. Представлено на Латиноамериканской и карибской конференции SPE по инженерно-нефтяным технологиям, Порт-оф-Спейн, Тринидад и Тобаго, 23–26 апреля.SPE-36105-MS. http://dx.doi.org/10.2118/36105-MS
  6. ↑ Kartoatmodjo, R.S.T. 1990. Новые корреляции для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  7. ↑ Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
  8. ↑ Kartoatmodjo, T. и Z., S. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Нефть Газ Дж.92 (27): 51–55.
  9. ↑ Диндорук, Б. и Кристман, П.Г. 2001. PVT-свойства и корреляции вязкости для нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября — 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
  10. ↑ Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Диссертация на степень магистра, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
  11. ↑ Петроски Г.Младший и Фаршад Ф. 1998. Корреляция давления, объема и температуры для сырой нефти Мексиканского залива. SPE Res Eval & Eng 1 (5): 416-420. SPE-51395-PA. http://dx.doi.org/10.2118/51395-PA
  12. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
  13. ↑ Whitson, C.H. и Брюле, М. Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
  14. ↑ Бергман Д.Ф. 2004. Не забывайте о вязкости. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
  15. ↑ Фитцджеральд, Д.Дж. 1994. Прогностический метод оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
  16. ↑ Daubert, T.E. и Даннер, Р.П. 1997. Книга технических данных API — Переработка нефти, 6-е издание, гл.11. Вашингтон, округ Колумбия: Американский институт нефти (API).
  17. ↑ Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol. 216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
  18. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
  19. ↑ Беггс, Х.Д. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
  20. ↑ Бил К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и связанных с ней газов при температуре и давлении нефтяного месторождения, № 3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE.
  21. ↑ Standing, M.B. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание.Ричардсон, Техас: Общество инженеров-нефтяников AIME
  22. ↑ Кузел Б. 1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
  23. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  24. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
  25. ↑ Абдул-Маджид, Г.Х. и Абу Аль-Суф, Н. 2000. Оценка поверхностного натяжения газа и нефти. J. Pet. Sci. Англ. 27 (3-4): 197-200. http://dx.doi.org/10.1016/S0920-4105(00)00058-9
  26. ↑ Бейкер О. и Свердлов В. 1955. Расчет поверхностного натяжения 3 — Расчет значений парахора. Oil Gas J. (5 декабря 1955 г.): 141.
  27. ↑ Бейкер О. и Свердлов В. 1956. Расчет поверхностного натяжения 6 — Определение поверхностного натяжения углеводородных жидкостей. Oil Gas J. (2 января 1956 г.): 125.
  28. ↑ Фироозабади, А.и Рэйми-младший, Х.Дж. 1988. Поверхностное натяжение водно-углеводородных систем в пластовых условиях. J Can Pet Technol 27 (май – июнь): 41–48.

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Расчет PVT-свойств

Характеристика сырой нефти

PEH: Масло_Система_Взаимосвязи

Свойства нефтяного флюида — PetroWiki

В идеале свойства флюида, такие как давление насыщения, соотношение газ / нефть раствора, коэффициент объема пласта и другие, определяются на основе лабораторных исследований, разработанных для дублирования интересующих условий.Однако экспериментальные данные довольно часто недоступны, потому что репрезентативные образцы не могут быть получены или продуктивный горизонт не оправдывает затрат на углубленное изучение пластового флюида. В этих случаях свойства давление-объем-температура (PVT) должны определяться по аналогии или с использованием корреляций, полученных эмпирическим путем. На этой странице представлены эти корреляции и приведены ссылки на более подробные вычисления.

Свойства масла

Подсчет запасов в нефтяном пласте или определение его характеристик требует знания физических свойств флюида при повышенных давлении и температуре.Первостепенное значение имеют давление насыщения, газовый фактор (газовый фактор) раствора и коэффициент объема пласта (FVF). Кроме того, вязкость и межфазное или поверхностное натяжение должны быть определены для расчетов, включающих поток нефти через трубу или пористую среду.

Ключевые свойства нефти, которые обычно необходимы для понимания коллектора и его продуктивности:

Таблица 1 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ) [20] [21] [22] [23] [24] [25] [26] [27] [28] обобщены рекомендуемые методы для определение общего использования каждого имущества.Эти рекомендации основаны на эффективности корреляции, полученной на основе общего набора данных, или на опыте автора, полученном при использовании различных корреляций в течение нескольких лет.

При выборе подходящих методов для выполнения расчетов для конкретного коллектора важно учитывать характеристики самой сырой нефти — ее плотность, содержание асфальтенов или парафинов и т.д. обсуждение каждого свойства.

Список литературы

  1. ↑ Ласатер, Дж. А. 1958. Корреляция давления в точке пузыря. J Pet Technol 10 (5): 65–67. SPE-957-G. http://dx.doi.org/10.2118/957-G.
  2. ↑ Аль-Шаммаси, A.A. 2001. Обзор корреляций между давлением точки пузыря и объемным фактором нефтедобычи. SPE Res Eval & Eng 4 (2): 146-160. SPE-71302-PA. http://dx.doi.org/10.2118/71302-PA
  3. ↑ Веларде, Дж., Близингейм, Т.А., и Маккейн-младший, У.Д. 1997. Корреляция свойств мазута при давлениях ниже давления пузыря — новый подход.Представлено на ежегодном техническом совещании CIM, Калгари, Альберта, 8–11 июня. ПЕТСОК-97-93. http://dx.doi.org/10.2118/97-93
  4. ↑ Аль-Мархун, М.А. 1992. Новые корреляции для объемных факторов образования нефтегазовых смесей. J Can Pet Technol 31 (3): 22. PETSOC-92-03-02. http://dx.doi.org/10.2118/92-03-02
  5. ↑ Frashad, F., LeBlanc, J.L., Garber, J.D. et al. 1996. Эмпирические корреляции PVT для колумбийской сырой нефти. Представлено на Латиноамериканской и карибской конференции SPE по инженерно-нефтяным технологиям, Порт-оф-Спейн, Тринидад и Тобаго, 23–26 апреля.SPE-36105-MS. http://dx.doi.org/10.2118/36105-MS
  6. ↑ Kartoatmodjo, R.S.T. 1990. Новые корреляции для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  7. ↑ Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
  8. ↑ Kartoatmodjo, T. и Z., S. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Нефть Газ Дж.92 (27): 51–55.
  9. ↑ Диндорук, Б. и Кристман, П.Г. 2001. PVT-свойства и корреляции вязкости для нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября — 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
  10. ↑ Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Диссертация на степень магистра, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
  11. ↑ Петроски Г.Младший и Фаршад Ф. 1998. Корреляция давления, объема и температуры для сырой нефти Мексиканского залива. SPE Res Eval & Eng 1 (5): 416-420. SPE-51395-PA. http://dx.doi.org/10.2118/51395-PA
  12. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
  13. ↑ Whitson, C.H. и Брюле, М. Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
  14. ↑ Бергман Д.Ф. 2004. Не забывайте о вязкости. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
  15. ↑ Фитцджеральд, Д.Дж. 1994. Прогностический метод оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
  16. ↑ Daubert, T.E. и Даннер, Р.П. 1997. Книга технических данных API — Переработка нефти, 6-е издание, гл.11. Вашингтон, округ Колумбия: Американский институт нефти (API).
  17. ↑ Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol. 216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
  18. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
  19. ↑ Беггс, Х.Д. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
  20. ↑ Бил К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и связанных с ней газов при температуре и давлении нефтяного месторождения, № 3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE.
  21. ↑ Standing, M.B. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание.Ричардсон, Техас: Общество инженеров-нефтяников AIME
  22. ↑ Кузел Б. 1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
  23. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  24. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
  25. ↑ Абдул-Маджид, Г.Х. и Абу Аль-Суф, Н. 2000. Оценка поверхностного натяжения газа и нефти. J. Pet. Sci. Англ. 27 (3-4): 197-200. http://dx.doi.org/10.1016/S0920-4105(00)00058-9
  26. ↑ Бейкер О. и Свердлов В. 1955. Расчет поверхностного натяжения 3 — Расчет значений парахора. Oil Gas J. (5 декабря 1955 г.): 141.
  27. ↑ Бейкер О. и Свердлов В. 1956. Расчет поверхностного натяжения 6 — Определение поверхностного натяжения углеводородных жидкостей. Oil Gas J. (2 января 1956 г.): 125.
  28. ↑ Фироозабади, А.и Рэйми-младший, Х.Дж. 1988. Поверхностное натяжение водно-углеводородных систем в пластовых условиях. J Can Pet Technol 27 (май – июнь): 41–48.

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Расчет PVT-свойств

Характеристика сырой нефти

PEH: Масло_Система_Взаимосвязи

Свойства нефтяного флюида — PetroWiki

В идеале свойства флюида, такие как давление насыщения, соотношение газ / нефть раствора, коэффициент объема пласта и другие, определяются на основе лабораторных исследований, разработанных для дублирования интересующих условий.Однако экспериментальные данные довольно часто недоступны, потому что репрезентативные образцы не могут быть получены или продуктивный горизонт не оправдывает затрат на углубленное изучение пластового флюида. В этих случаях свойства давление-объем-температура (PVT) должны определяться по аналогии или с использованием корреляций, полученных эмпирическим путем. На этой странице представлены эти корреляции и приведены ссылки на более подробные вычисления.

Свойства масла

Подсчет запасов в нефтяном пласте или определение его характеристик требует знания физических свойств флюида при повышенных давлении и температуре.Первостепенное значение имеют давление насыщения, газовый фактор (газовый фактор) раствора и коэффициент объема пласта (FVF). Кроме того, вязкость и межфазное или поверхностное натяжение должны быть определены для расчетов, включающих поток нефти через трубу или пористую среду.

Ключевые свойства нефти, которые обычно необходимы для понимания коллектора и его продуктивности:

Таблица 1 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ) [20] [21] [22] [23] [24] [25] [26] [27] [28] обобщены рекомендуемые методы для определение общего использования каждого имущества.Эти рекомендации основаны на эффективности корреляции, полученной на основе общего набора данных, или на опыте автора, полученном при использовании различных корреляций в течение нескольких лет.

При выборе подходящих методов для выполнения расчетов для конкретного коллектора важно учитывать характеристики самой сырой нефти — ее плотность, содержание асфальтенов или парафинов и т.д. обсуждение каждого свойства.

Список литературы

  1. ↑ Ласатер, Дж. А. 1958. Корреляция давления в точке пузыря. J Pet Technol 10 (5): 65–67. SPE-957-G. http://dx.doi.org/10.2118/957-G.
  2. ↑ Аль-Шаммаси, A.A. 2001. Обзор корреляций между давлением точки пузыря и объемным фактором нефтедобычи. SPE Res Eval & Eng 4 (2): 146-160. SPE-71302-PA. http://dx.doi.org/10.2118/71302-PA
  3. ↑ Веларде, Дж., Близингейм, Т.А., и Маккейн-младший, У.Д. 1997. Корреляция свойств мазута при давлениях ниже давления пузыря — новый подход.Представлено на ежегодном техническом совещании CIM, Калгари, Альберта, 8–11 июня. ПЕТСОК-97-93. http://dx.doi.org/10.2118/97-93
  4. ↑ Аль-Мархун, М.А. 1992. Новые корреляции для объемных факторов образования нефтегазовых смесей. J Can Pet Technol 31 (3): 22. PETSOC-92-03-02. http://dx.doi.org/10.2118/92-03-02
  5. ↑ Frashad, F., LeBlanc, J.L., Garber, J.D. et al. 1996. Эмпирические корреляции PVT для колумбийской сырой нефти. Представлено на Латиноамериканской и карибской конференции SPE по инженерно-нефтяным технологиям, Порт-оф-Спейн, Тринидад и Тобаго, 23–26 апреля.SPE-36105-MS. http://dx.doi.org/10.2118/36105-MS
  6. ↑ Kartoatmodjo, R.S.T. 1990. Новые корреляции для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  7. ↑ Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
  8. ↑ Kartoatmodjo, T. и Z., S. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Нефть Газ Дж.92 (27): 51–55.
  9. ↑ Диндорук, Б. и Кристман, П.Г. 2001. PVT-свойства и корреляции вязкости для нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября — 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
  10. ↑ Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Диссертация на степень магистра, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
  11. ↑ Петроски Г.Младший и Фаршад Ф. 1998. Корреляция давления, объема и температуры для сырой нефти Мексиканского залива. SPE Res Eval & Eng 1 (5): 416-420. SPE-51395-PA. http://dx.doi.org/10.2118/51395-PA
  12. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
  13. ↑ Whitson, C.H. и Брюле, М. Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
  14. ↑ Бергман Д.Ф. 2004. Не забывайте о вязкости. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
  15. ↑ Фитцджеральд, Д.Дж. 1994. Прогностический метод оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
  16. ↑ Daubert, T.E. и Даннер, Р.П. 1997. Книга технических данных API — Переработка нефти, 6-е издание, гл.11. Вашингтон, округ Колумбия: Американский институт нефти (API).
  17. ↑ Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol. 216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
  18. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
  19. ↑ Беггс, Х.Д. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
  20. ↑ Бил К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и связанных с ней газов при температуре и давлении нефтяного месторождения, № 3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE.
  21. ↑ Standing, M.B. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание.Ричардсон, Техас: Общество инженеров-нефтяников AIME
  22. ↑ Кузел Б. 1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
  23. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  24. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
  25. ↑ Абдул-Маджид, Г.Х. и Абу Аль-Суф, Н. 2000. Оценка поверхностного натяжения газа и нефти. J. Pet. Sci. Англ. 27 (3-4): 197-200. http://dx.doi.org/10.1016/S0920-4105(00)00058-9
  26. ↑ Бейкер О. и Свердлов В. 1955. Расчет поверхностного натяжения 3 — Расчет значений парахора. Oil Gas J. (5 декабря 1955 г.): 141.
  27. ↑ Бейкер О. и Свердлов В. 1956. Расчет поверхностного натяжения 6 — Определение поверхностного натяжения углеводородных жидкостей. Oil Gas J. (2 января 1956 г.): 125.
  28. ↑ Фироозабади, А.и Рэйми-младший, Х.Дж. 1988. Поверхностное натяжение водно-углеводородных систем в пластовых условиях. J Can Pet Technol 27 (май – июнь): 41–48.

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Расчет PVT-свойств

Характеристика сырой нефти

PEH: Масло_Система_Взаимосвязи

2 Химические и физические свойства сырой нефти | Разливы разбавленного битума из трубопроводов: сравнительное исследование экологической судьбы, последствий и ответных мер

выбранный разбавитель или разбавители и соотношение разбавителя к битуму.В результате разбавленный битум имеет размеры изменчивости, значительно превышающие размеры сырой нефти из данного региона-источника. 21

ХИМИЧЕСКИЙ СОСТАВ РАЗБАВЛЕННОГО БИТУМА

Разбавленный битум и другая сырая нефть обычно содержат одни и те же классы соединений, но относительное содержание этих классов широко варьируется. Эти различия, в свою очередь, связаны с большими различиями в физических и химических свойствах. Стандартные отраслевые анализы группируют соединения по четырем основным классам, а именно насыщенные углеводороды, ароматические углеводороды, смолы и асфальтены.Насыщенные углеводороды наиболее распространены в легкой сырой нефти, которая является наименее плотной и наименее вязкой. Более плотная и более вязкая сырая нефть имеет более высокие концентрации других компонентов, включая смолы и асфальтены, которые содержат более полярные соединения, часто включая «гетероатомы» азота, серы и кислорода, а также углерод и водород.

Даже среди легкой или средней сырой нефти относительное содержание определенных соединений может значительно различаться. Относительные содержания будут зависеть от точного состава органического материала, доставленного в исходные отложения, скорости и продолжительности нагрева материнской породы, какие неорганические минералы — потенциальные катализаторы конкретных химических реакций — присутствовали в материнской породе. , расстояние и детали пути миграции, а также условия в резервуаре.В Таблице 2-1 и на Рисунке 2-1 в качестве репрезентативных примеров представлены североамериканские сырой нефти каждого типа, по которым легко доступны данные. 22

При переходе от легкой, средней и тяжелой нефти к разбавленному битуму содержание насыщенных углеводородов снижается в 4 раза, а совокупное содержание смол и асфальтенов увеличивается в 50 раз. Эти отличия

ТАБЛИЦА 2-1 Основные классы соединений в сырой нефти, массовые проценты

Тип сырой нефти Насыщенные Ароматические углеводороды Смолы Асфальтены
Легкая нефть a 92 8 1 0
Средняя сырая b 78 15 6 1
Тяжелая нефть c 38 29 20 13
Разбавленный битум d 25 22 33 20

a Scotia Light.
b West Texas Intermediate.
c Sockeye Sour.
d Смесь Cold Lake.
ИСТОЧНИК: Hollebone 22

Физические свойства масел и жиров

Анализ физических свойств масел и жиров позволяет нам понять поведение и характеристики этих элементов, а также их различия. Для этого будут проанализированы кристаллизация, температура плавления, вязкость, показатель преломления, плотность, растворимость, пластичность и эмульгирующая способность.
Здесь мы подробно расскажем о каждом из них.

Кристаллизация

Жиры отличаются от масел степенью затвердевания при комнатной температуре, так как в этих условиях масла находятся в жидком состоянии (не кристаллизованы), а жиры находятся в твердом (кристаллизованном) состоянии.

Доля кристаллов в жирах имеет большое значение для определения физических свойств продукта. Жиры считаются твердыми, если они содержат не менее 10% кристаллизованных компонентов.

Кристаллы жира имеют размер от 0,1 до 0,5 мкм и иногда могут достигать 100 мкм. Кристаллы поддерживаются силами Ван-дер-Ваальса, образуя трехмерную сеть, которая придает изделию жесткость.

Важной особенностью жира является его кристаллический полиморфизм, поскольку моно-ди и триглицериды кристаллизуются в различных кристаллических формах (α, β, β ’).

  • Форма α (стекловидное тело):
    • появляется при быстром затвердевании жира.
    • образованные кристаллы имеют гексагональный тип и беспорядочно расположены в пространстве.
  • Форма β:
    • Это происходит, когда охлаждение происходит медленно или если отпуск проводится при температуре немного ниже точки плавления, причем эта форма является наиболее стабильной из всех.
    • в β-форме образуются трициклические кристаллы, ориентированные в одном направлении.
    • β-форма типична для пальмового масла, арахиса, кукурузы, кокоса, подсолнечника, оливок и сала.
  • Форма β ’:
    • он получен в результате отпуска выше температуры плавления α-формы.
    • в β-форме образуются ромбические кристаллы, ориентированные в противоположных направлениях.
    • β’-форма типична для частичного модифицированного хлопкового масла, жиров, жиров и модифицированного сала.

Как α, β, так и β’ форма имеют температуру плавления, рентгеновскую картину диффузии и показатель преломления.
Чем больше двойной связи, тем затрудняется кристаллизация, при которой она становится жидкой.

Точка плавления

Температура плавления жира соответствует температуре плавления β-формы, которая является наиболее стабильной полиморфной формой и является температурой, при которой плавятся все твердые вещества.

Когда присутствуют короткоцепочечные или ненасыщенные кислоты, температура плавления снижается.

Температура плавления имеет большое значение при переработке животных жиров.

Точки плавления чистых жиров очень точны, но поскольку жиры или масла состоят из смеси липидов с разными температурами плавления, мы должны относиться к зоне плавления, которая определяется как точка плавления жирового компонента.жир, плавящийся при более высокой температуре.

Вязкость

Вязкость жира обусловлена ​​внутренним трением между составляющими его липидами. Как правило, он высокий из-за большого количества молекул, составляющих жир.

При увеличении степени ненасыщенности вязкость уменьшается, а при увеличении длины цепи компоненты жирных кислот также увеличивают вязкость.

Показатель преломления

Показатель преломления вещества определяется как отношение скорости света в воздухе и в анализируемом веществе (масле или жире).

Увеличение степени ненасыщенности увеличивает показатель преломления, а при увеличении длины цепочки показатель преломления также увеличивается, поэтому его используют для управления процессом гидрирования.

При повышении температуры показатель преломления уменьшается.

Показатель преломления характерен для каждого масла и жира, что помогает нам контролировать их качество.

Плотность

Это физическое свойство имеет большое значение при проектировании оборудования для обработки смазки.

Плотность уменьшается при расширении жиров при переходе от твердого к жидкому

Когда жиры тают, их объем увеличивается, а следовательно, и плотность уменьшается.

Для контроля процентного содержания твердого и жидкого в товарном жире используются дилатометрические кривые.

Растворимость

Растворимость имеет большое значение при переработке жиров.

Жиры — это полностью растворимые неполярные растворители (бензол, гексан…).

За исключением фосфолипидов, они полностью нерастворимы в полярных растворителях (вода, ацетонитрил).Частично растворимы в растворителях промежуточной полярности (спирт, ацетон)

Растворимость жиров в органических растворителях снижается с увеличением длины цепи и степени насыщения.

Фосфолипиды могут взаимодействовать с водой, поскольку фосфорная кислота и входящие в их состав спирты имеют гидрофильные группы.

Обычно поверхностное натяжение увеличивается с увеличением длины цепи и уменьшается с температурой. Поверхностное натяжение и межфазное натяжение легко уменьшаются с использованием поверхностно-активных веществ, таких как моноглицериды и фосфолипиды.


Пластичность

Это свойство тела сохранять свою форму, сопротивляясь определенному давлению.

Пластичность жира обусловлена ​​наличием трехмерной сети кристаллов, внутри которых иммобилизован жидкий жир.

Чтобы консистентная смазка была пластичной и растяжимой, должно быть соотношение между твердой и жидкой частью (20-40% твердого жира), сетки не должны быть плотными, а их кристаллы должны иметь форму α.

Пластиковые жиры действуют как твердые тела до тех пор, пока прилагаемые деформирующие силы не разрушают кристаллическую решетку, и смазка не переходит в состояние вязкой жидкости и поэтому может размазываться.

Эмульгирующая способность

Эмульгирующая способность — это способность на границе раздела вода / масло, позволяющая образовывать эмульсию.

Свойства, использование и оптимизация параметров обработки в промышленном производстве

Lipid Insights. 2016; 9: 1–12.

Винай Р. Патель

1 Кафедра масел, жиров и восков, Университет Сардара Пателя, Гуджарат, Индия.

2 SDI Farms, Inc., Майами, Флорида, США.

3 Jayant Oils and Derivatives Ltd., Вадодара, Индия.

Джерард Дж. Думанкас

4 Департамент математики и физических наук, Государственный университет Луизианы — Александрия, Лос-Анджелес, США.

5 Химический факультет Оклахомского баптистского университета, Шони, штат Оклахома, США.

6 Process Analytical Technology, GlaxoSmithKline, King of Prussia, PA, USA.

Лакшми К. Каси Вишванат

5 Химический факультет, Баптистский университет Оклахомы, Шони, Оклахома, США.

Randall Maples

7 Химический факультет Восточно-Центрального университета, Ада, штат Оклахома, США.

Брайан Джон Дж. Субонг

8 Институт морских наук, Научный колледж Филиппинского университета — Дилиман, Кесон-Сити, Филиппины.

1 Кафедра масел, жиров и восков, Университет Сардара Пателя, Гуджарат, Индия.

2 SDI Farms, Inc., Майами, Флорида, США.

3 Jayant Oils and Derivatives Ltd., Вадодара, Индия.

4 Департамент математики и физических наук, Государственный университет Луизианы — Александрия, Луизиана, США.

5 Химический факультет Оклахомского баптистского университета, Шони, штат Оклахома, США.

6 Process Analytical Technology, GlaxoSmithKline, King of Prussia, PA, USA.

7 Химический факультет Восточно-Центрального университета, Ада, штат Оклахома, США.

8 Институт морских наук, Колледж наук, Университет Филиппин — Дилиман, Кесон-Сити, Филиппины.

Поступила 01.06.2016; Пересмотрено 7 августа 2016 г .; Принято 9 августа 2016 г.

Автор (ы), издатель и лицензиат, 2016 г. Libertas Academica Ltd.

Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons CC-BY-NC 3.0.

Эта статья цитируется в других статьях в PMC.

Abstract

Касторовое масло, производимое из клещевины, долгое время считалось имеющим важное коммерческое значение, в частности, для производства мыла, смазок и покрытий. Мировое производство касторового масла сосредоточено в основном в небольшом географическом регионе Гуджарат в Западной Индии. Этот регион благоприятен своим трудоемким методом выращивания и условиями субтропического климата. Предприниматели и переработчики касторового масла в Соединенных Штатах и ​​Южной Америке также выращивают касторовую фасоль, но сталкиваются с проблемой достижения высокой эффективности производства касторового масла, а также получения масла желаемого качества.В этой рукописи мы даем подробный анализ новых методов обработки, используемых при производстве касторового масла. Мы обсуждаем новые методы обработки, объясняя конкретные технологические параметры, связанные с производством касторового масла.

Ключевые слова: касторовое масло, касторовые бобы, рицинолевая кислота, непищевое масло, рафинация сырого касторового масла

Введение

Касторовое масло уже давно коммерчески используется в качестве возобновляемого ресурса в химической промышленности.1,2 Это очень полезный продукт. масло растительное, полученное прессованием семян клещевины ( Ricinus communis L.), который в основном выращивается в Африке, Южной Америке и Индии.3,4 Основные страны-производители касторового масла включают Бразилию, Китай и Индию. Известно, что это масло было приручено в Восточной Африке и завезено в Китай из Индии примерно 1400 лет назад.4 Индия является нетто-экспортером касторового масла, на долю которого приходится более 90% экспорта касторового масла, в то время как Соединенные Штаты, Европейский Союз , и Китай являются основными импортерами, на долю которых приходится 84% импортированного касторового масла.5,6

Индия известна как мировой лидер в производстве касторовых семян и масла и является лидером в международной торговле касторовым маслом.Производство касторового масла в этой стране обычно колеблется от 250 000 до 350 000 тонн в год. Примерно 86% производства семян клещевины в Индии сосредоточено в Гуджарате, за которым следуют Андхра-Прадеш и Раджастхан. В частности, регионы Мехсана, Банасканта и Саураштра / Катч в Гуджарате и районы Налгонда и Махбубнагар в Андхра-Прадеш являются основными районами производства касторового масла в Индии.7 Экономический успех клещевины в Гуджарате в 1980-х годах и позже можно отнести к сочетанию хорошей программы разведения, хорошей модели расширения в сочетании с доступом к хорошо развитым национальным и международным рынкам.8

Касторка — одна из старейших возделываемых культур; однако на его долю приходится всего 0,15% растительного масла, производимого в мире. Масло, произведенное из этой культуры, считается важным для мировой специальной химической промышленности, поскольку оно является единственным коммерческим источником гидроксилированной жирной кислоты.9 Несмотря на то, что на касторовое масло приходится всего 0,15% мирового производства растительных масел, во всем мире потребление этого товара увеличилось более чем на 50% за последние 25 лет, увеличившись с примерно 400 000 тонн в 1985 году до 610 000 тонн в 2010 году.9,10 В среднем мировое потребление касторового масла увеличивалось на 7,32 тысячи тонн в год. В целом, текущие темпы производства касторового масла не считаются достаточными для удовлетворения ожидаемого увеличения спроса.

Существуют различные проблемы, которые затрудняют выращивание клещевины. Приспособляемость к климату является одной из проблем, ограничивающих плантацию клещевины в США. Растение также содержит токсичный белок, известный как рицин, что затрудняет его производство в США.S. Это также требует трудоемкого процесса сбора урожая, что делает практически невозможным выращивание клещевины в США и других развитых странах.

Клещевина оптимально растет в районах с тропическим летним дождем. Он хорошо растет от влажных тропиков до субтропических засушливых регионов с оптимальной температурой 20–25 ° C. Высокое содержание масла в семенах может быть связано с теплыми климатическими условиями, но температура выше 38 ° C может привести к плохой завязке семян. Кроме того, известно, что температура, достаточно низкая, чтобы вызвать образование инея, убивает растение.11

По состоянию на 2008 год три страны (Индия, Китай и Бразилия) произвели 93% мировых поставок касторового масла. Поскольку производство сконцентрировано в основном в этих трех странах, общий объем производства клещевины сильно варьируется от года к году из-за колебаний количества осадков и размеров площадей, используемых для посадки. Как следствие, такая концентрация привела к циклическому производству клещевок. Таким образом, мы надеемся, что диверсификация регионов выращивания клещевины и производства при орошении снизит влияние климата на поставки клещевины.9

В Соединенных Штатах опасные химические продукты, обнаруженные в клещевилке, особенно рицин, вызвали серьезную озабоченность. 9,12–15 Объем научной литературы, связанной с клещевинами, особенно по детальным параметрам обработки, задействованным в коммерческом производстве. Производство клещевины было относительно невелико в течение последнего столетия.9. За прошедшие годы проявился значительный интерес и были проведены исследования по использованию и свойствам клещевины, но не в промышленных масштабах. Исследования касторового масла показали рост числа рукописей, увеличившийся в шесть раз с 1980-х годов ().Хотя альтернативные программы разведения и маркетинг могут привести к экономическому росту производства касторового масла, на коммерческом уровне различные проекты терпят неудачу из-за отсутствия знаний о новых методах обработки и параметрах, используемых при производстве касторового масла. В этой рукописи подробно обсуждаются эти параметры обработки. Хотя метод обработки клещевины обычно можно рассматривать как простой процесс, он также может быть сложным, если операторы не знают точных параметров обработки и рабочих процедур.В частности, параметры процесса производства касторового масла должны быть оптимизированы для достижения высокой эффективности экстракции масла с помощью метода экстракции растворителем16,17. В настоящее время не существует научной литературы, в которой подробно обсуждаются параметры промышленной обработки касторового масла. В этой статье подробно обсуждаются параметры обработки касторового масла и важные ключевые моменты, необходимые для производства касторового масла желаемого качества, и то, и другое важно для производителей касторового масла.

Исследования касторового масла показали растущий рост с 1980-х годов.Этот рисунок был создан путем поиска слов «касторовое масло» в PubMed.

Касторовое масло и его свойства

Касторовое масло выращивают ради семян (), в результате чего получают вязкое, бледно-желтое нелетучее и невысыхающее касторовое масло.18 Были изучены физические свойства касторового масла (). Сравнительный анализ показал, что значения вязкости, плотности, теплопроводности и температуры застывания касторового масла были выше, чем у стандартной смазки (моторное масло SAE 40).19

Таблица 1

Физические свойства касторового масла.

9048 9048 м
ФИЗИЧЕСКИЕ СВОЙСТВА
Вязкость (сантистоксы) 889,3
Плотность (г / мл) 0,959
Удельная теплоемкость (кДж / кг / K) 0,089
Температура вспышки (° C) 145
Температура застывания (° C) 2.7
Температура плавления (° C) от -2 до -5
Показатель преломления 1,480

Уникальная структура касторового масла предлагает интересные свойства, что делает его подходящим для различных промышленных применений. Известно, что касторовое масло содержит до 90% рицинолевой, 4% линолевой, 3% олеиновой, 1% стеариновой и менее 1% линоленовой жирных кислот. Касторовое масло ценно благодаря высокому содержанию рицинолевой кислоты (RA), которая используется в различных областях химической промышленности ().20

Химическая структура рицинолевой кислоты, основного компонента касторового масла.

Гидроксильная функциональность RA делает касторовое масло природным полиолом, обеспечивающим окислительную стабильность маслу и относительно высокий срок хранения по сравнению с другими маслами за счет предотвращения образования пероксида. Присутствие гидроксильной группы в производных RA и RA обеспечивает расположение функциональной группы для выполнения множества химических реакций, включая галогенирование, дегидратацию, алкоксилирование, этерификацию и сульфатирование.В результате эта уникальная функциональность позволяет использовать касторовое масло в промышленных приложениях, таких как краски, покрытия, чернила и смазочные материалы.20

Касторовые бобы, источник касторового масла, также содержат некоторые аллергенные (2S альбумин) белки. как рицин; однако обработанное или рафинированное касторовое масло не содержит каких-либо из этих веществ и может безопасно использоваться в фармацевтических целях. Это можно объяснить широким спектром его биологического воздействия на высшие организмы.13,21 Рицин обнаружен исключительно в эндосперме семян клещевины и классифицируется как белок, инактивирующий рибосомы типа 2.22,23 Белки, инактивирующие рибосомы типа 2, такие как рицин из касторового масла, представляют собой лектины, которые необратимо инактивируют рибосомы, тем самым останавливая синтез белка и в конечном итоге приводя к гибели клеток. Это делает рицин сильнодействующим токсином для растений.24

Применение касторового масла и его производных

Топливо и биодизель

Касторка считается одной из самых многообещающих непищевых масличных культур благодаря высокой годовой урожайности и урожайности семян, а также так как его можно выращивать на маргинальных землях и в полузасушливом климате.Было проведено несколько исследований относительно свойств касторового топлива в чистом виде или в смеси с дизельным топливом, в первую очередь из-за чрезвычайно высокого содержания RA. В исследовании Бермана и др. 25 было обнаружено, что метиловые эфиры касторового масла могут использоваться в качестве альтернативного биодизельному сырью при смешивании с дизельным топливом. Однако максимальный уровень смешивания ограничен 10% из-за высокого уровня RA, присутствующего в масле, который напрямую влияет на кинематическую вязкость биодизеля и температуру перегонки.В другом исследовании Shojaeefard et al26 изучалось влияние смесей биодизельного топлива с касторовым маслом на характеристики дизельного двигателя и выбросы. Они обнаружили, что 15% смесь касторового масла и биодизеля была оптимизированной смесью биодизеля и дизельного топлива. Результаты показали, что более низкие смеси биодизеля обеспечивают приемлемые характеристики двигателя и даже улучшают их. Подобно исследованию Shojaeefard et al. 26 Panwar et al27 получили метиловый эфир касторового масла путем переэтерификации с использованием гидроксида калия (KOH) в качестве катализатора.Затем они протестировали этот метиловый эфир, используя его в четырехтактном одноцилиндровом дизельном двигателе с переменной степенью сжатия. Был сделан вывод, что более низкие смеси биодизеля увеличивают термический КПД разрыва и снижают расход топлива. Кроме того, температура выхлопных газов увеличивалась с увеличением концентрации биодизельного топлива. Результаты их исследования доказали, что использование биодизеля из касторового масла в двигателе с воспламенением от сжатия является жизнеспособной альтернативой дизелю. Реакции переэтерификации касторового масла с этанолом и метанолом в качестве агентов переэтерификации также были изучены в присутствии нескольких классических каталитических систем.Результаты их исследования показывают, что биодизельное топливо может быть получено путем переэтерификации касторового масла с использованием этанола или метанола в качестве агентов переэтерификации.28 Хотя эти исследования показали многообещающие результаты использования касторового масла в качестве технически осуществимого биодизельного топлива, серьезным препятствием все еще остается существует в его использовании в качестве биодизеля в некоторых странах, таких как Бразилия. В Бразилии государственная политика продвигала клещевину как сырье для биодизеля, пытаясь принести социальные выгоды мелким фермерам в полузасушливом регионе страны.29,30 Однако через семь лет после запуска бразильской программы по производству биодизеля для производства биодизеля использовалось ничтожное количество касторового масла. Было обнаружено, что касторовое масло, произведенное в рамках этой программы, не использовалось в первую очередь для производства биодизеля, а продавалось по более высоким ценам в химической промышленности.30 Еще одним серьезным ограничением в использовании касторового масла в качестве сырья для биодизеля была высокая цена, уплаченная за масло как промышленное масло, а не его физические и химические свойства. Касторовое масло пользуется большим спросом в химической промышленности для производства продуктов с очень высокой стоимостью.По этой причине использование этого масла в качестве замены дизельного топлива неэкономично.9 Наконец, хотя касторовое масло можно использовать непосредственно для замены обычного дизельного топлива, высокая вязкость этого масла ограничивает его применение.31

Полимерные материалы

Касторовое масло и его производные можно использовать в синтезе возобновляемых мономеров и полимеров.2 В одном исследовании касторовое масло было полимеризовано и сшито с серой или диизоцианатами с образованием вулканизированных и уретановых производных соответственно.32 В другом исследовании полностью взаимопроникающие полимерные сетки (IPN) были приготовлены из эпоксидной смолы и полиуретана (PU) на основе касторового масла последовательным способом синтеза.33 Подобно вышеупомянутому исследованию, серия двухкомпонентных IPN модифицированных ПУ на основе касторового масла и полистирол (ПС) были получены последовательным методом. 34 IPN может быть разработан как особый класс полимеров, в котором существует комбинация двух полимеров, в которых один синтезируется или полимеризуется в присутствии другого.35,36 Таким образом, состав IPN можно рассматривать как полезный метод для разработки продукта с превосходными физико-механическими свойствами, чем обычные полисмеси. IPN также известен как полимерные сплавы и считается одной из самых быстрорастущих областей исследований в области смесей полимеров за последние два десятилетия34. пломбировочный материал для прикорневых концов. Пломбировочный материал корневого конца просто относится к препаратам корневого конца, заполненным экспериментальными материалами.Основная цель этого типа материала — обеспечить апикальное уплотнение, предотвращающее перемещение бактерий и диффузию бактериальных продуктов из системы корневых каналов в периапикальные ткани.37 В исследовании, проведенном de Martins et al, 38, герметизирующая способность COP, минеральный триоксидный заполнитель (MTA) и стеклоиономерный цемент (GIC) в качестве материалов для заполнения корня. MTA в основном состоит из трикальциевого силиката, трикальциевого аллюмината и оксида висмута и представляет собой особый эндодонтический цемент.39 GIC, с другой стороны, являются основными реставрационными материалами, которые являются биоактивными и имеют широкий спектр применений, таких как облицовка, бондинг, герметизация, фиксация или восстановление зуба.40 Результаты их исследования показывают, что COP имел большую герметичность способность при использовании в качестве корневого пломбировочного материала, чем MTA и GIC.

Биоразлагаемые полиэфиры — одно из наиболее распространенных применений касторового масла.41 Полиэфиры — первые синтетические конденсационные полимеры, полученные Каротерсом в 1930-х годах.42,43 Известно, что они биоразлагаемые и экологически безопасные, с широким спектром применений в биомедицинской области, а также в получении эластомеров и упаковочных материалов. 44,45 Каркасы на основе жирных кислот являются желательными биоразлагаемыми полимерами, хотя их применение ограничено. своим монофункциональным свойством. То есть большинство жирных кислот имеют одну группу карбоновой кислоты. Однако известно, что RA является одной из немногих естественных бифункциональных жирных кислот с дополнительной 12-гидроксильной группой наряду с концевой карбоновой кислотой ().Присутствие этой гидроксильной группы обеспечивает дополнительную функциональность для получения сложных полиэфиров или полиэфир-ангидридов. Свисающие цепи RA придают гидрофобность получаемым полиэфирам, тем самым влияя на механические и физические свойства полимеров. Эти цепи действуют как пластификаторы, снижая температуру стеклования сложных полиэфиров.41,46 Касторовое масло можно комбинировать с другими мономерами для получения множества сополимеров. Точная настройка этих сополимеров может обеспечить материалы с различными свойствами, которые находят применение в различных продуктах, от твердых имплантатов до гидрофобного геля для инъекций in situ.41

Мыла, воски и смазки

В некоторых исследованиях касторовое масло использовалось для производства мыла.47–49 В некоторых исследованиях касторовое масло также используется в восках.50–53 В одном исследовании, проведенном Двиведи и Сапре54, касторовое масло использовалось во всех овощах. масляные смазки. Полные смазки на растительном масле — это смазки, в которых и смазка, и гелеобразователь образованы из растительного масла. В их исследовании использовалась схема одновременных реакций для образования натриевых и литиевых смазок с использованием касторового масла.

Смазочные материалы, гидравлические и тормозные жидкости

Касторовое масло также использовалось для разработки базовых компонентов смазочных материалов с низкой температурой застывания путем синтеза ацилокси-касторовых полиоловых эфиров.55 Свойство низкой температуры застывания помогает обеспечить полную смазку при запуске оборудования, и с ним легче обращаться в холодную погоду. 56 Интересное исследование Сингха показало превосходный потенциал смазки на основе касторового масла в качестве средства снижения загрязнения дыма. В своем исследовании биоразлагаемое масло для двухтактных двигателей (2T), популярная разновидность смазочного масла, используемого в двухтактных двигателях скутеров и мотоциклов, 57 было разработано на основе касторового масла, которое состояло из моноэфиров толила и рабочих присадок, но не смешивалось. растворитель.Их эксплуатационные характеристики показали, что он снижает дымность на 50–70% при соотношении масла и топлива 1%, что соответствует стандартной спецификации продукта.58 В дополнение к возможному использованию в качестве моторного масла автомобиля, модифицированная версия Смазка на основе касторового масла, состоящая из 100 частей касторового масла и 20–110 частей химически и термически стабильной жидкой смеси с низкой вязкостью, растворимой в касторовом масле, показала свой потенциал в качестве смазки для холодильных систем.59 Хотя касторовое масло использовалось в качестве DOT Тормозная жидкость с рейтингом 2 считается устаревшим типом тормозной жидкости, которую нельзя использовать ни в каких современных транспортных средствах.60,61

Удобрения

При производстве касторового масла образуются два основных побочных продукта: шелуха и шрот. На каждую тонну касторового масла получается 1,31 тонны шелухи и 1,1 тонны шрота. Исследование, проведенное Лимой и соавторами 62, показало, что смеси клещевины и шелухи клещевины, используемые в качестве удобрения, способствовали значительному росту растений до дозы 4,5% (по объему) муки. Однако дозы, превышающие 4,5%, вызывали снижение роста растений и даже гибель растений. Их исследование показало, что клещевина может быть использована в качестве хорошего органического удобрения из-за высокого содержания азота и фосфора, но смешивание с касторовой шелухой не обязательно.

Покрытия

Покрытия и краски также являются еще одним применением касторового масла. Касторовое масло можно эффективно обезвоживать с помощью неконъюгированных аддуктов масло-малеиновый ангидрид для получения полезных красок или мебельного масла () .63 Тревино и Трамбо64 изучали использование касторового масла в качестве покрытия путем преобразования гидроксильных функций касторового масла в β-кетоэфиры. с использованием t -бутилацетоацетата. Известно, что реакция является относительно быстрой и протекает с высоким выходом в мягких условиях.Результаты показали, что блеск пленок 60 ° и гибкость пленки были хорошими. В отдельном исследовании, проведенном Такуром и Караком, 65 современных материалов для покрытия поверхностей были синтезированы из сверхразветвленных полиуретанов на основе касторового масла (HBPU), сильно разветвленной макромолекулы. HBP продемонстрировали отличные характеристики в качестве материалов для поверхностного покрытия с HBPU на основе моноглицеридов, демонстрируя более высокую прочность на разрыв, чем прямые покрытия на масляной основе. Оба HBPU имеют приемлемые диэлектрические свойства с термической стабильностью более 250 ° C для обоих полимеров.Покрытия Ceramer также являются еще одним нанесением касторового масла. де Лука и др .66 синтезировали керамические покрытия из касторового масла или эпоксидированного касторового масла и тетраэтоксисилана. Совсем недавно высокоэффективные гибридные покрытия были синтезированы Аллауддином и др. 67 с использованием методологии, которая включала введение гидролизуемых групп –Si-OCH 3 в касторовое масло, которое использовалось для разработки гибридных покрытий PU / мочевина-диоксид кремния.

Схема реакции дегидратации рицинолевой кислоты.

Фармакологическое и медицинское применение

Хотя касторовое масло хорошо известно как сильнодействующее слабительное, его лечебное применение относительно невелико (<1%). Помимо этого печально известного применения касторового масла, оно считается важным сырьем, используемым в химической промышленности, особенно при производстве широкого спектра материалов, многие из которых превосходят аналогичные продукты, полученные из нефти. Высокий процентный состав RA в непосредственной близости от двойной связи делает это масло устойчивым к различным физическим, химическим и даже физиологическим действиям, как описано в вышеупомянутых параграфах.5

Благодаря активности RA в кишечнике, касторовое масло широко используется в различных биологических исследованиях, связанных с антидиарейной активностью на лабораторных животных. Касторовое масло часто вводят перорально, чтобы вызвать диарею у крыс.68–70 Этот анализ привел к быстрому и эффективному методу предварительного скрининга различных фитохимических веществ на предмет потенциальных лекарств-кандидатов из натуральных продуктов.

В современной медицине касторовое масло также используется в качестве средства доставки лекарств. Примером является Kolliphor EL или ранее известный как Cremophor EL, который является зарегистрированным продуктом BASF Corp.Продукт представляет собой полиэкстоксилированное касторовое масло, смесь (CAS № 61791-12-6), которую получают, когда 35 моль этиленоксида вступают в реакцию с одним моль касторового масла. Этот продукт часто используется в качестве наполнителя или добавки в лекарствах, а также используется для образования стабильных эмульсий неполярных материалов в различных водных системах. Его также часто используют в качестве средства доставки очень неполярных лекарств, таких как противораковые препараты паклитаксел и доцетаксел.71–73

Экстракция касторового масла

Касторовое масло содержит около 30-50% масла ( м / м ).74,75 Касторовое масло можно экстрагировать из клещевины механическим прессованием, экстракцией растворителем или сочетанием прессования и экстракции.74 После сбора урожая семенам дают высохнуть, чтобы оболочка семян раскололась, высвобождая семена внутри . Процесс экстракции начинается с снятия оболочки с семян. Это можно сделать механически с помощью лущилки клещевины или вручную руками. Когда это экономически целесообразно, предпочтительнее использовать машину для облегчения процесса шелушения.

После снятия оболочки с семян семена очищаются от любых посторонних материалов, таких как палки, стебли, листья, песок или грязь. 75 Эти материалы обычно можно удалить с помощью серии вращающихся сит или катушек. Магниты, используемые над конвейерными лентами, могут удалять железо. Затем семена можно нагреть, чтобы внутренняя часть семян затвердела для экстракции. В этом процессе семена нагреваются в прессе с паровой рубашкой для удаления влаги, и этот процесс отверждения способствует экстракции.Затем приготовленные семена сушат перед началом процесса экстракции. Шнек непрерывного действия или гидравлический пресс используются для измельчения семян касторового масла для облегчения удаления масла (). Первая часть этой фазы экстракции называется предварительным прессованием. Для предварительного прессования обычно используется винтовой пресс, называемый маслоэкраном. Маслоэкспеллер представляет собой винтовой пресс непрерывного действия высокого давления для извлечения масла.

Промышленный винтовой пресс непрерывного действия.

Хотя этот процесс можно проводить при низкой температуре, механическое прессование приводит только к 45% извлечению масла из клещевины.16 Более высокие температуры могут повысить эффективность экстракции. Урожайность до 80% доступного масла может быть получена при использовании высокотемпературного гидравлического прессования в процессе экстракции.74 Температуру экстракции можно контролировать путем циркуляции холодной воды через прессовую машину, отвечающую за холодное прессование семян. Касторовое масло холодного отжима имеет более низкое содержание кислоты и йода и светлее по цвету, чем касторовое масло, полученное экстракцией растворителем.75

После экстракции масло собирают и фильтруют, а отфильтрованный материал снова объединяют с новыми свежими семенами для повторной экстракции .Таким образом, объемный фильтрованный материал продолжает собираться и проходит несколько циклов экстракции, комбинируясь с новым сыпучим материалом по мере того, как процесс повторяется. Этот материал, наконец, выталкивается из пресса и известен как касторовый пирог. Касторовый жмых из пресса содержит примерно до 10% касторового масла.75 После измельчения и извлечения масла из основной массы семян касторового масла дальнейшее извлечение масла из оставшегося материала касторового жмыха может быть выполнено путем измельчения касторового жмыха и с использованием методов экстракции растворителем.Экстрактор Сокслета или коммерческий растворитель используется для извлечения масла из касторового жмыха. Использование органических растворителей, таких как гексан, гептан или петролейный эфир, в качестве растворителя в процессе экстракции приводит к удалению большей части остаточного масла, все еще недоступного в оставшейся массе семян.

Фильтрация / очистка касторового масла

После экстракции масла с помощью пресса в полученном масле все еще остаются примеси. Чтобы помочь в удалении оставшихся примесей, обычно используются системы фильтрации.Системы фильтрации способны удалять частицы крупного и мелкого размера, любые растворенные газы, кислоты и даже воду из масла.75 Оборудование системы фильтрации, обычно используемое для этой задачи, — это фильтр-пресс. Неочищенное касторовое масло имеет бледно-желтый или соломенный цвет, но его можно сделать бесцветным или почти бесцветным после очистки и отбеливания. Сырая нефть также имеет отчетливый запах, но ее также можно дезодорировать в процессе очистки.

Переработка касторового масла

После фильтрации неочищенное или нерафинированное масло отправляется на нефтеперерабатывающий завод для переработки.В процессе рафинирования из масла удаляются такие примеси, как коллоидные вещества, фосфолипиды, избыточные свободные жирные кислоты (СЖК) и красители. Удаление этих примесей позволяет маслу не портиться при длительном хранении. Этапы процесса рафинирования включают рафинирование, нейтрализацию, отбеливание и дезодорацию. 16,74 Масло рафинировано, добавляя к нему горячую воду, давая смеси отстояться, и, наконец, удаляют водный слой. Этот процесс можно повторить.После стадии рафинирования для нейтрализации добавляют сильное основание, такое как гидроксид натрия. Затем основание удаляют горячей водой, и разделение между водным слоем и маслом позволяет удалить водный слой. За нейтрализацией следует отбеливание для удаления цвета, оставшихся фосфолипидов и любых остатков продуктов окисления. Затем касторовое масло дезодорируют, чтобы удалить из него запах. Рафинированное касторовое масло обычно имеет длительный срок хранения около 12 месяцев при условии, что оно не подвергается чрезмерному нагреванию.Шаги, связанные с очисткой сырого касторового масла, более подробно рассматриваются в следующем разделе.

Очистка сырого касторового масла

В то время как в предыдущем разделе кратко обсуждался общий обзор стадии очистки касторового масла, в этом разделе подробно объясняется каждый из процессов, участвующих в ней. Нерафинированное касторовое масло приводит к быстрой деградации из-за присутствия примесей, как указано в разделе «Очистка касторового масла», что делает его менее подходящим для большинства применений.1 Следовательно, процесс очистки должен быть проведен до дериватизации масла.Порядок этапов, выполняемых в процессе рафинирования, который включает рафинирование, нейтрализацию, отбеливание, дезодорацию и иногда подготовку к зиме, должен приниматься во внимание для эффективной рафинации масла () и подробно и конкретно описан в условиях производства касторового масла в разделе « Дегумминг »,« Нейтрализация »,« Отбеливание »,« Дезодорация »и« Утепление ».

Блок-схема обработки роликов.

Удаление слизи

Первый этап процесса очистки касторового масла, называемый удалением слизи, используется для снижения содержания фосфатидов и металлов в сырой нефти.Фосфатиды, присутствующие в неочищенном касторовом масле, можно найти в форме лецитина, цефалина и фосфатидных кислот.76 Эти фосфатиды можно разделить на два разных типа: гидратируемые и негидратируемые, 77 и, соответственно, подходящие процедуры рафинирования (водное рафинирование, кислотное рафинирование и энзиматическое рафинирование) для эффективного удаления этих фосфатидов. Как правило, сырое растительное масло содержит около 10% негидратируемых фосфатидов.77 Однако количество может значительно варьироваться в зависимости от различных факторов, таких как тип семян, качество семян и условия, применяемые во время операции измельчения.В то время как гидратируемые фосфатиды можно удалить по большей части с помощью водного рафинирования, негидратируемые фосфатиды можно удалить только с помощью кислотных или ферментативных процедур рафинирования.77

Гидратируемые гидратируемые фосфатиды

Гидратируемые гидратируемые фосфатиды — это относительно простой и недорогой процесс для удаления как можно большего количества смол. возможно на начальных этапах переработки нефти. В этом процессе сырая нефть нагревается примерно до 60–70 ° C. Затем к сырой нефти добавляют воду, и полученную смесь хорошо перемешивают и оставляют на 30 минут, в течение которых фосфатиды, присутствующие в сырой нефти, становятся гидратированными и, таким образом, становятся нерастворимыми в масле.78 Гидратированные фосфатиды можно удалить декантацией или центрифугированием. Водное рафинирование позволяет удалить даже небольшие количества негидратируемых фосфатидов вместе с гидратируемыми фосфатидами. Экстрагированные камеди можно перерабатывать в лецитин для пищевых, кормовых или технических целей.

Кислотное рафинирование

В целом процесс кислотного рафинирования можно рассматривать как лучшую альтернативу процессу водного рафинирования, если сырая нефть содержит значительное количество негидратируемых фосфатидов.79 В процессе кислотного рафинирования неочищенное касторовое масло обрабатывают кислотой (фосфорной, яблочной или лимонной) в присутствии воды. 77,80 Кислотное рафинирование обычно проводится при повышенной температуре, обычно около 90 ° С. С. Затем осажденные камеди отделяют центрифугированием с последующей сушкой в ​​вакууме рафинированного масла.79

Ферментативное рафинирование

Превращение негидратируемых фосфатидов в гидратируемые фосфатиды также может быть достигнуто с использованием ферментов.81 Здесь раствор ферментов, который представляет собой смесь водного раствора лимонной кислоты, каустической соды и ферментов, диспергируется в отфильтрованном масле при умеренных температурах, обычно от 45 ° C до 65 ° C. Высокоскоростной вращающийся смеситель используется для эффективного смешивания масла и фермента. Затем масло отделяется от гидратированной камеди путем механического отделения и подвергается вакуумной сушке.82 Существует множество так называемых «микробных ферментов». Первыми из них были фосфолипазы A1 (Lecitase® Novo и Ultra), а совсем недавно — фосфолипаза C (Purifine®).Липид ацилтрансфераза (LysoMax®) с активностью PLA2 также стала доступной в коммерческих количествах. Эти ферменты имеют определенные функции и особенности. Например, ферменты Lecitases® и LysoMax® способны катализировать гидролиз всех обычных фосфатидов. Фермент Purifine®, с другой стороны, специфичен для фосфатидилхолина и фосфатидилэтаноламина.81

Нейтрализация

Семена клещевины хорошего качества, хранящиеся в контролируемых условиях, производят только низкое содержание FFA, примерно 0.3% .82 Иногда масличные семена, которые старые или хранятся более 12 месяцев с высоким содержанием влаги, производят высокое содержание FFA на уровне около 5 %.83 Этот избыток FFA, присутствующий в касторовом масле, не обеспечивает тех же функций, что и масло. нейтральное масло и может изменять свою реакционную способность с различными веществами. Следовательно, очень важно удалить высокое содержание FFA, чтобы получить высококачественное касторовое масло. Этот процесс удаления FFA из очищенного от слизи масла называется нейтрализацией.82

В целом процесс рафинирования можно разделить на два метода: химический и физический рафинирование. Физическое рафинирование обычно осуществляется путем поддержания высокой температуры выше 200 ° C при низком давлении вакуума. В этих условиях обработки FFA с низкой точкой кипения перегоняется в вакууме из триглицеридов с высокой точкой кипения. Однако физическая очистка не рекомендуется в случае касторового масла из-за его чувствительности к теплу, поскольку оно обычно начинает распадаться при температуре выше 150 ° C, что может привести к гидролизу гидроксильных групп.С другой стороны, химическая очистка основана на принципе растворимости триглицеридов и мыла жирных кислот.82 СЖК (кислоты) реагируют с щелочью (сильное основание) с образованием мыла жирных кислот (). Образовавшееся мыло обычно нерастворимо в масле и, следовательно, его можно легко отделить от масла на основании разницы в удельном весе мыла и триглицеридов. Удельный вес мыла выше, чем у триглицеридов, поэтому оно имеет тенденцию оседать на дне реактора.На большинстве современных нефтеперерабатывающих заводов для разделения мыльной и масляной смеси используются высокоскоростные центрифуги.

Образование мыла с рицинолевой кислотой.

Щелочная нейтрализация или химическая очистка снижает содержание следующих компонентов: свободных жирных кислот, продуктов окисления свободных жирных кислот, остаточных белков, фосфатидов, углеводов, следов металлов и части пигментов. Касторовое масло, очищенное от слизи, сначала обрабатывают раствором щелочи (2% каустической соды) при температуре от 85 ° C до 95 ° C при постоянном перемешивании в течение примерно 45–60 минут.84 На этом этапе щелочь реагирует с FFA и превращает их в мыльный раствор. Полученное мыло имеет более высокий удельный вес, чем нейтральное масло, и имеет тенденцию оседать на дне. Масло можно отделить от мыла гравитационным разделением или с помощью коммерческих центрифуг. Мелкие нефтеперерабатывающие заводы используют маршрут гравитационного разделения, тогда как заводы большой мощности используют коммерческие центрифуги с вертикальным штабелем. Затем отделенное масло промывают горячей водой для удаления мыла, раствора щелочи и других примесей.85 Как правило, периодическая нейтрализация касторового масла требует от четырех до шести промывок горячей водой, чтобы снизить уровень мыла до уровня ниже 100 частей на миллион. 84 Полученное таким образом масло сушат в вакууме и передают на следующий процесс — отбеливание.

Нейтрализация касторового масла — это этап очистки с высокими потерями. Эта потеря, предположительно, связана с небольшой разницей в удельном весе образующегося мыла и нейтрального вязкого касторового масла.83

Отбеливание

Касторовое масло используется во многих областях, где внешний вид конечного продукта чрезвычайно важен.Например, косметические составы, смазочные добавки и производство биоматериалов требуют, чтобы цвет конечного продукта находился в определенных пределах. Хотя касторовое масло, полученное после процессов рафинирования и нейтрализации, по внешнему виду дает прозрачную жидкость, оно все же может содержать окрашенные тела, натуральные пигменты и антиоксиданты (токоферолы и токотриенолы), которые были экстрагированы вместе с неочищенным маслом из касторовых бобов. пигменты чрезвычайно малы, от 10 до 50 нм, и их невозможно удалить из масла с помощью какой-либо единичной операции.82 Однако процесс адсорбции, называемый «отбеливанием», может использоваться для удаления таких цветных пигментов и оставшихся фосфолипидов с использованием активированных земель в условиях умеренного вакуума от 50 до 100 мм рт. Уменьшение цвета масла можно измерить с помощью аналитического прибора, называемого тинтометром.

Активированные земли — это глинистые руды, содержащие минералы, а именно бентонит и монтмориллонит. Эти типы глины обычно встречаются на всех континентах, образовавшихся в результате уникальных географических перемещений миллионы лет назад.87 Эффективность отбеливающей земли, также называемая отбеливающей способностью, зависит от способности адсорбировать цветные пигменты и другие загрязнения на ее поверхности. Обычно необработанная глина имеет более низкую отбеливаемость, чем активированная кислотой или обработанная глина. Необработанные глины при активации концентрированной кислотой с последующей промывкой и сушкой приобретают большую адсорбционную способность для адсорбции цветных пигментов из масла.88

Отбеливание касторового масла можно проводить в вакууме при температуре около 100 ° C при постоянном перемешивании масла подходящей количество активированных земель и угля.78 Процесс отбеливания требует около 2% отбеливающей земли и углерода для получения желаемого масла светлого цвета. В этих условиях обработки окрашенные тела, мыло и фосфатиды адсорбируются на активированной земле и угле. Активированная земля и уголь удаляются с помощью стандартного фильтра. Полученный таким образом отработанный углерод земли сохраняет содержание нефти около 20-25%. Отбеливающее касторовое масло с повышенным содержанием фосфатидов и мыла часто приводит к сильному удерживанию масла из-за большого количества используемой активированной земли и, таким образом, вызывает проблемы с фильтрацией.Хотя эта оставшаяся нефть на отработанной земле может быть извлечена путем кипячения отработанной земли в воде или методом экстракции растворителем, восстановленная нефть из отработанной земли сильно окрашена с высоким содержанием FFA и высоким содержанием пероксида, обычно более 10 мг КОН / г и 20 мэкв / кг, соответственно.88

Дезодорация

Дезодорация — это просто процесс вакуумной перегонки с водяным паром, который удаляет относительно летучие компоненты, которые вызывают нежелательные привкусы, цвета и запахи в жирах и маслах.В отличие от других растительных масел, касторовое масло требует ограниченного дезодорации или не требует ее вообще, так как это непищевое масло, в котором легкий резкий запах не является проблемой для большинства его применений, за исключением фармацевтического касторового масла.89,90 Дезодорация обычно проводится. в высоком вакууме и при высокой температуре выше 250 ° C для удаления нежелательных запахов, вызываемых кетонами, альдегидами, стеролами, тритерпеновыми спиртами и короткоцепочечными жирными кислотами.85 Касторовое масло фармацевтического качества дезодорируется при низких температурах, приблизительно от 150 ° C до 170 ° C в высоком вакууме в течение 8–10 часов, чтобы избежать гидролиза гидроксигруппы RA.86

Подготовка к зиме

Большинство растительных масел содержат высокие концентрации восков, жирных кислот и липидов. Следовательно, он подвергается процессу подготовки к зиме перед окончательным использованием. Подготовка масла к зиме — это процесс, при котором воски кристаллизуются и удаляются с помощью процесса фильтрации, чтобы избежать помутнения жидкой фракции при более низких температурах. Кизельгур является обычно используемым вспомогательным фильтрующим агентом, и полученный в конце фильтрационный осадок может быть переработан в кормовой ингредиент.В некоторых случаях аналогичный процесс, называемый «депарафинизация», также может использоваться в качестве средства для осветления масла, когда количество мутности сохраняется.91,92

Выводы и направления на будущее

Касторовое масло является многообещающим товаром, имеющим множество разнообразных свойств. применения в ближайшие годы, особенно в качестве возобновляемого источника энергии.

Важное значение для производства и сбыта касторового масла имеет научное исследование параметров обработки, необходимых для повышения выхода масла. В последние годы были выполнены алгоритмы и расчеты прогнозного моделирования с машинным обучением, которые были реализованы для прогнозирования и оптимизации любых технологических параметров при производстве касторового масла.Использование искусственной нейронной сети (ИНС) в сочетании с генетическим алгоритмом (GA) и экспериментами с центральным композитным дизайном (CCD) позволило разработать статистическую модель для оптимизации множества переменных, предсказывающих наилучшие условия работы с минимальным количеством экспериментов и высоким содержанием касторового масла. 93 В отдельном исследовании, проведенном Мбахом и др. 17, для определения условий использовался многоуровневый факторный план с использованием программного обеспечения Minitab, что привело к оптимальному выходу экстракции касторового масла методом экстракции растворителем.Это исследование показало, что оптимальные условия, включающие время выщелачивания в течение двух часов, температуру выщелачивания 50 ° C и соотношение растворенных веществ: растворителей 2 г: 40 мл, обеспечивают оптимальный выход экстракции касторового масла. Такой математический экспериментальный план и методология могут оказаться полезными при анализе эффектов и взаимодействий многих экспериментальных факторов, участвующих в производстве касторового масла.

С появлением биотехнологических инноваций генная инженерия может улучшить как качество, так и количество касторового масла.Генную инженерию можно разделить на две части: один подход заключается в увеличении количества определенных жирных кислот, а второй подход — в разработке биосинтетических путей промышленных масел с высокой ценностью.94 Для последнего могут быть добыты кластеры биосинтетических генов, ответственные за производство жирных кислот. для этой цели. В одном конкретном исследовании Лу и др. 95 Arabidopsis thaliana , экспрессирующий гидроксилазу 12 жирных кислот клещевины (FAh22), использовали для поиска генов, которые могут улучшать накопление гидоксижирных кислот среди развитых трансгенных семян.Вышеупомянутое исследование позволило идентифицировать определенные белки, которые могут улучшить содержание гидроксижирных кислот в семенах клещевины. Эти белки включают олеозины (небольшой белок, участвующий в образовании липидных тел) и фосфатидилэтаноламин (белок, участвующий в модификации жирных кислот и передающийся в триацилглицерин) .96 Понимая генетику, лежащую в основе производства масла, можно достичь лучшего выхода.

С наступлением эры –омики геномика, транскриптомика и протеомика могут стать ключевыми игроками в понимании генетики улучшения качества и количества добычи нефти.Достижения в области геномики позволили разработать последовательность генома клещевины, которая привела к пониманию его генетического разнообразия.97,98 Будущее направление будет включать тандемную геномику и транскриптомику, которая может помочь выявить различия в уровнях экспрессии генов по пространственно-временному параметру, влияющему на качество и количество масла. Кроме того, протеомика может быть использована для понимания белков и ферментов, которые экспрессируются клещевиной. 99 Поскольку это немодельный организм, методы идентификации белков на основе гомологии могут быть использованы для понимания клеточной и биологической природы производства масла, что приведет к улучшенное качество и количество масла.

В качестве источника биодизеля недавние исследования показали, что синтез биодизеля из касторового масла ограничен рядом факторов, в том числе наличием надлежащей температуры реакции, молярного отношения масла к метанолу и количества катализатора. Исследование с использованием методологии поверхности отклика в качестве модели было использовано для оптимизации фактора реакции для синтеза биодизельного топлива из касторового масла.100 В другом аналогичном исследовании были исследованы параметры, влияющие на реакцию переэтерификации касторового масла.Используя метод Тагучи, состоящий из четырех параметров (температура реакции, интенсивность перемешивания, соотношение спирт / масло и концентрация катализатора), были определены лучшие экспериментальные условия. Было определено, что температуру реакции и интенсивность перемешивания можно оптимизировать. Используя оптимальные результаты, авторы предложили кинетическую модель, которая привела к установлению уравнения для начальной скорости реакции переэтерификации.101 Помимо метода Тагучи, полный факторный план эксперимента также является еще одним подходом, который был исследован для оптимизации производства биодизеля из клещевины. масло.Была получена полиномиальная модель второго порядка для прогнозирования выхода биодизельного топлива как функции этих переменных. Экспериментальные результаты этого процесса показали, что средний выход биодизеля превышает 90% .102 Использование моделей и моделирования действительно может значительно повысить эффективность производства биодизеля из касторового масла. Кроме того, была предложена простая модель, использующая би-би-механизм пинг-понга, которая обобщает эффективный метод некаталитической переэтерификации касторового масла в сверхкритическом метаноле и этаноле.103 Это модель ферментативной реакции, в которой участвуют два субстрата и два продукта (так называемая би-би-система). Фермент сначала вступает в реакцию с одним субстратом с образованием продукта и модифицированного фермента. Затем модифицированный фермент будет реагировать со вторым субстратом с образованием конечного продукта и регенерировать исходный фермент. В этой модели фермент воспринимается как мяч для пинг-понга, который перескакивает из одного состояния в другое.

Производство биодизеля из касторового масла — действительно перспективное предприятие.Достижения в области моделей и моделирования облегчили оптимизацию ключевых параметров обработки, необходимых для получения хорошего выхода такого биодизельного топлива.

В этом обзоре мы представляем как обширный, так и интенсивный анализ касторового масла, от его промышленного до фармакологического использования. Кроме того, в этом обзоре обсуждалась традиционная и современная переработка касторового масла, а также будущие направления, по мере того как мы вступаем в эру -омики и компьютерного анализа.

Благодарности

Мы хотели бы поблагодарить Jayant Oils and Derivatives и SDI Farms, Inc за то, что они позволили нам использовать их оборудование, которое привело к концептуализации этой рукописи.

Сокращения

генетический алгоритм 9048 гидрокси-полимер IP de 9048 9048 9048 полиуретан Y + 5R
ANN искусственная нейронная сеть
AV кислотное число
CCD центральная композитная конструкция
COP 9048 масло обезвоженное касторовое масло
DOC обезжиренный жмых
FAh22 гидроксилаза жирных кислот 12
FFA свободная жирная кислота
стеклоиономерный цемент
HBPUs сверхразветвленные полиуретаны
HV гидроксильное значение
IV йодное число
IV йодный полимер с йодным числом
MTA Минеральный триоксидный агрегат
SV Степень омыления
RA Рицинолевая кислота
ПУ Желтый + 5 (Красный)

Сноски

АКАДЕМИЧЕСКИЙ РЕДАКТОР: Тим Левин, главный редактор

РЕЦЕНЗЕНТ: Три рецензента внесли свой вклад в отчет экспертной оценки.В отчетах рецензентов было 727 слов без учета конфиденциальных комментариев академического редактора.

ФИНАНСИРОВАНИЕ: Авторы не раскрывают никаких внешних источников финансирования.

КОНКУРЕНТНЫЕ ИНТЕРЕСЫ: VRP использовался Jayant Oils and Derivatives Ltd. и SDI Inc., коммерческими производителями касторового масла, во время подготовки этой рукописи. Другие авторы не сообщают о потенциальных конфликтах интересов.

Работа, прошедшая одностороннее слепое рецензирование независимым экспертом.Все редакционные решения принимаются независимым академическим редактором. При подаче рукопись была подвергнута антиплагиатной проверке. Перед публикацией все авторы подписали подтверждение согласия на публикацию статьи и соблюдение всех применимых этических и юридических требований, включая точность информации об авторе и соавторах, раскрытие конкурирующих интересов и источников финансирования, соблюдение этических требований, касающихся человека и животных. участников исследования, а также соблюдение требований об авторских правах третьих лиц.Этот журнал является членом Комитета по этике публикаций (COPE).

Вклад авторов

Задумал и разработал исследование: VRP, GGD и LCKV. Проанализированы данные: VRP, GGD и LCKV. Написал первый черновик рукописи: ВРП. В написании рукописи участвовали: VRP, GGD, LCKV, RM и BJJS. Согласен с результатами и выводами рукописи: VRP, GGD, LCKV, RM и BJJS. Совместно разработали структуру и аргументы для статьи: VRP, GGD, LCKV, RM и BJJS.Внесены критические исправления и утверждена финальная версия: VRP, GGD, LCKV, RM и BJJS. Все авторы просмотрели и одобрили окончательный вариант рукописи.

СПИСОК ЛИТЕРАТУРЫ

1. Огунний Д.С. Касторовое масло: жизненно важное промышленное сырье. Биоресур Технол. 2006. 97 (9): 1086–1091. [PubMed] [Google Scholar] 2. Mutlu H, Meier MAR. Касторовое масло как возобновляемый ресурс для химической промышленности. Eur J Lipid Sci Technol. 2010. 112 (1): 10–30. [Google Scholar] 3. Энциклопедия промышленной химии Томаса А. Ульмана.Wiley-VCH Verlag GmbH & Co. KGaA; 2000. Жиры и жирные масла. [Google Scholar] 4. Хун Д-Й, Блэкмор С. Растения Китая: спутник флоры Китая. Издательство Кембриджского университета; 2015. [Google Scholar] 5. Маккеон Т., Хейс Д., Хильдебранд Д., Везелаке Р. Промышленные масличные культуры. Эльзевир; 2016. [Google Scholar]

6. OIL WORLD ISTA Mielke GmbH: Служба прогнозирования и информации для масличных культур, масел и шротов.

7. Shrirame H, Panwar N, Bamniya B. Биодизельное топливо из касторового масла — вариант экологически чистой энергии.Низкоуглеродная экон. 2011; 2: 1–6. [Google Scholar] 8. Тевари ДД. Исторический политический обзор успеха касторовой революции в Гуджарате, Индия. J Hum Ecol Нью-Дели. 2012; 38 (3): 213. [Google Scholar] 9. Северино Л.С., Олд Д.Л., Балданзи М. и др. Обзор проблем, связанных с увеличением производства роликов. Агрон Дж. 2012; 104 (4): 853. [Google Scholar] 10. Scholz V, da Silva JN. Перспективы и риски использования касторового масла в качестве топлива. Биомасса Биоэнергетика. 2008. 32 (2): 95–100. [Google Scholar] 11. Бассам NE. Виды энергетических растений: их использование и влияние на окружающую среду и развитие.Рутледж; 2013. [Google Scholar] 12. Олснес С. История рицина, абрина и родственных токсинов. Токсикон. 2004. 44 (4): 361–370. [PubMed] [Google Scholar] 13. Audi J, Belson M, Patel M, Schier J, Osterloh J. Отравление рицином: всесторонний обзор. ДЖАМА. 2005. 294 (18): 2342–2351. [PubMed] [Google Scholar] 14. Доан LG. Рицин: механизм токсичности, клинические проявления и разработка вакцины. Обзор. J Toxicol Clin Toxicol. 2004. 42 (2): 201–208. [PubMed] [Google Scholar] 15. Франц Д.Р., Яакс Н.К. Рициновый токсин.Med Asp Chem Biol Warf. 1997: 631–642. [Google Scholar] 16. Музенда Э., Кабуба Дж., Мдлетие П., Белаид М. Оптимизация технологических параметров производства касторового масла. 2012 [Google Scholar] 17. Mbah GO, Amulu NF, Onyiah MI. Влияние технологических параметров на выход масла из клещевины. Am J Eng Res. 2014. 3 (5): 179–186. [Google Scholar] 18. Salimon J, Noor DAM, Nazrizawati AT, Firdaus MM, Noraishah A. Состав жирных кислот и физико-химические свойства малазийской клещевины Ricinus communis L.растительное масло. Sains Malays. 2010. 39 (5): 761–764. [Google Scholar] 19. Казим О, Тайво О, Казим А. и др. Определение некоторых физических свойств касторового ( Ricirus communis ) масла. Int J Sci Eng Technol. 2014. 3 (12): 1503–1508. [Google Scholar] 20. Данфорд NT. Пищевые и промышленные биопродукты и биопереработка. Джон Уайли и сыновья; 2012. [Google Scholar] 21. Балинт Г.А. Рицин: токсичный белок семян касторового масла. Токсикология. 1974. 2 (1): 77–102. [PubMed] [Google Scholar] 22. Стирпе Ф, Баттелли МГ.Белки, инактивирующие рибосомы: успехи и проблемы. Cell Mol Life Sci. 2006. 63 (16): 1850–1866. [PubMed] [Google Scholar] 23. Фернандес К.В., Деус-де-Оливейра Н., Годой М.Г. и др. Одновременная инактивация аллергенов и детоксикация клещевины путем обработки соединениями кальция. Braz J Med Biol Res. 2012. 45 (11): 1002–1010. [Бесплатная статья PMC] [PubMed] [Google Scholar] 24. Льюис К. Энтероиммунология: руководство по профилактике и лечению хронических воспалительных заболеваний. Psy Press; 2015. [Google Scholar] 25.Берман П., Низри С., Висман З. Биодизель с касторовым маслом и его смеси в качестве альтернативного топлива. Биомасса Биоэнергетика. 2011. 35 (7): 2861–2866. [Google Scholar] 26. Шоджаифард М.Х., Этгани М.М., Мейсами Ф., Барари А. Экспериментальное исследование характеристик и выбросов биодизельного топлива с касторовым маслом из дизельного двигателя. Environ Technol. 2013; 34 (13–16): 2019–2026. [PubMed] [Google Scholar] 27. Панвар Н.Л., Шрайрам Х.Й., Ратхор Н.С., Джиндал С., Курчания АК. Оценка эффективности дизельного двигателя, работающего на метиловом эфире касторового масла.Appl Therm Eng. 2010. 30 (2–3): 245–249. [Google Scholar] 28. Менегетти SMP, Менегетти MR, Вольф CR и др. Биодизель из касторового масла: сравнение этанолиза и метанолиза. Энергетическое топливо. 2006. 20 (5): 2262–2265. [Google Scholar] 29. Холл Дж., Матос С., Северино Л., Бельтрао Н. Бразильское биотопливо и социальная изоляция: устоявшийся и концентрированный этанол по сравнению с появляющимся и диспергированным биодизелем. J Clean Prod. 2009; 17 (приложение 1): S77 – S85. [Google Scholar] 30. да Силва Сезар А., Отавио Баталья М. Производство биодизеля из касторового масла в Бразилии: сложная реальность.Энергетическая политика. 2010. 38 (8): 4031–4039. [Google Scholar] 31. Кулкарни М.Г., Савант С.Б. Некоторые физические свойства эфиров касторового масла и гидрогенизированных эфиров касторового масла. Eur J Lipid Sci Technol. 2003. 105 (5): 214–218. [Google Scholar] 32. Йенво Г. М., Мэнсон Дж. А., Пулидо Дж., Сперлинг Л. Х., Конде А., Девиа Н. Взаимопроникающие полимерные сети на основе касторового масла: синтез и характеристика. J Appl Polym Sci. 1977; 21 (6): 1531–1541. [Google Scholar] 33. Раймонд М.П., ​​Буй ВТ. Взаимопроникающие полимерные сети эпоксидной смолы и касторового масла.J Appl Polym Sci. 1998. 70 (9): 1649–1659. [Google Scholar] 34. Дэйв В.Дж., Патель Х.С. Синтез и характеристика взаимопроникающих полимерных сеток из переэтерифицированного полиуретана и полистирола на основе касторового масла. J Saudi Chem Soc [Google Scholar] 35. Chen S, Wang Q, Wang T. Жидкий нитрильный каучук с концевыми гидроксильными группами, модифицированный касторовым маслом на основе полиуретана / эпоксидной смолы IPN: демпфирующие, термические и механические свойства. Полим-тест. 2011. 30 (7): 726–731. [Google Scholar] 36. Ajithkumar S, Patel NK, Kansara SS.Сорбция и диффузия органических растворителей через взаимопроникающие полимерные сетки (ВПС) на основе полиуретана и ненасыщенного полиэфира. Eur Polym J. 2000; 36 (11): 2387–2393. [Google Scholar] 37. Фогель HM, Peikoff MD. Микропротечка корневых пломбировочных материалов. Дж. Эндод. 2001. 27: 456–458. [PubMed] [Google Scholar] 38. де Мартинс Г.Р., Карвалью КПП, Валера М.С., де Оливейра Л.Д., Бусо Л., Карвалью А.С. Герметизирующая способность полимера касторового масла в качестве материала для заполнения корней. J Appl Oral Sci Rev.2009; 17 (3): 220–223.[Бесплатная статья PMC] [PubMed] [Google Scholar] 39. Casella G, Ferlito S. Использование минерального триоксидного агрегата в эндодонтии. Минерва Стоматол. 2006. 55 (3): 123–143. [PubMed] [Google Scholar] 40. Альмухайза М. Стеклоиономерные цементы в реставрационной стоматологии: критическая оценка. J Contemp Dent Pract. 2016; 17 (4): 331–336. [PubMed] [Google Scholar] 41. Kunduru KR, Basu A, Haim Zada ​​M, Domb AJ. Биоразлагаемые полиэфиры на основе касторового масла. Биомакромолекулы. 2015; 16 (9): 2572–2587. [PubMed] [Google Scholar] 42. Carothers WH.Исследования полимеризации и образования кольца. I. Введение в общую теорию конденсационных полимеров. J Am Chem Soc. 1929. 51 (8): 2548–2559. [Google Scholar] 43. Carothers WH, Arvin JA. Исследования полимеризации и образования кольца. II. Полиэфиры. J Am Chem Soc. 1929. 51 (8): 2560–2570. [Google Scholar] 44. Maisonneuve L, Lebarbé T, Grau E, Cramail H. Взаимосвязь между структурой и свойствами термопластов на основе жирных кислот как синтетических имитаторов полимеров. Polym Chem. 2013. 4 (22): 5472–5517. [Google Scholar] 45.Вилела С., Соуза А.Ф., Фонсека А.С. и др. Стремление к экологически чистым полиэстерам — взгляд в будущее. Polym Chem. 2014. 5 (9): 3119–3141. [Google Scholar] 46. Петрович З.С., Цветкович И., Хонг Д. и др. Полиолы полиэфирные и полиуретаны из рицинолевой кислоты. J Appl Polym Sci. 2008. 108 (2): 1184–1190. [Google Scholar] 47. Берт Б.Г., Мили WC. Процесс изготовления чистого мыла. 1942 [Google Scholar] 50. Лерер С.Б., Карр Р.М., Мюллер Д.Д., Сальваджо Дж. Э. Обнаружение касторовых аллергенов в касторовом воске. Клиническая аллергия. 1980. 10 (1): 33–41.[PubMed] [Google Scholar] 51. Будай Л., Антал И., Хлебович И., Будай М. Натуральные масла и воски: исследования на основе стиков. J Cosmet Sci. 2012. 63 (2): 93–101. [PubMed] [Google Scholar] 52. Уолтерс Э.Л. Композиции диэтилпропиона с замедленным высвобождением. 1983. [Google Scholar] 53. Арнольд К. Касторовые композиции воск-ампротропин-смола. 1964. [Google Scholar] 54. Dwivedi MC, Sapre S. Общая консистентная смазка на основе растительного масла, приготовленная из касторового масла. J Synth Lubr. 2002. 19 (3): 229–241. [Google Scholar] 55. Камалакар К., Махеш Г., Прасад РБН, Каруна МСЛ.Новая методология синтеза сложных эфиров ацилокси-касторовых полиолов: базовые компоненты смазочных материалов с низкой температурой застывания. J Oleo Sci. 2015; 64 (12): 1283–1295. [PubMed] [Google Scholar] 56. Heinz PB. Практическая смазка для промышленных объектов. Fairmont Press; 2009. [Google Scholar] 57. Bhandari VB. Проектирование элементов машин. 2-е изд. Макгроу-Хилл; 1974. [Google Scholar] 58. Сингх АК. Смазка на основе касторового масла снижает выделение дыма в двухтактных двигателях. Ind Crops Prod. 2011. 33 (2): 287–295. [Google Scholar] 59.Гейнер GC, Удача RM. Модифицированная смазка на касторовом масле для холодильных систем, использующих галоидоуглеродные хладагенты. 1979 [Google Scholar] 60. Автомобильный CDX. Южноафриканский автомобильный легкий транспорт, уровень 2. Джонс и Бартлетт Урнинг; 2013. [Google Scholar] 61. Рудник LR. Синтетика, минералы, масла и смазочные материалы на биологической основе: химия и технология. Второе издание. CRC Press; 2013. [Google Scholar] 62. Lima RLS, Severino LS, Sampaio LR, Sofiatti V, Gomes JA, Beltrão NEM. Смеси клещевины и шелухи клещевины для оптимального использования в качестве органического удобрения.Ind Crops Prod. 2011. 33 (2): 364–368. [Google Scholar] 63. Груммитт О., Марш Д. Альтернативные методы обезвоживания касторового масла. J Am Oil Chem Soc. 1953; 30 (1): 21–25. [Google Scholar] 64. Trevino AS, Trumbo DL. Ацетоацетилированное касторовое масло для нанесения покрытий. Prog Org Coat. 2002. 44 (1): 49–54. [Google Scholar] 65. Такур С., Карак Н. Сверхразветвленные полиуретаны на основе касторового масла в качестве передовых материалов для покрытия поверхностей. Prog Org Coat. 2013. 76 (1): 157–164. [Google Scholar] 66. де Лука М.А., Мартинелли М., Якоби М.М., Беккер П.Л., Ферран М.Ф.Покрытия Ceramer из касторового или эпоксидированного касторового масла и тетраэтоксисилана. J Am Oil Chem Soc. 2006. 83 (2): 147–151. [Google Scholar] 67. Аллауддин С., Нараян Р., Раджу КВСН. Синтез и свойства алкоксисиланового касторового масла и их гибридных покрывающих пленок полиуретан / мочевина-диоксид кремния. ACS Sustain Chem Eng. 2013; 1 (8): 910–918. [Google Scholar] 68. Оффиа В.Н., Чиквенду UA. Противодиарейные эффекты экстракта листьев Ocimum gratissimum у экспериментальных животных. J Ethnopharmacol. 1999. 68 (1): 327–330. [PubMed] [Google Scholar] 69.Girard P, Pansart Y, Lorette I, Gillardin JM. Зависимость «доза-ответ» и механизм действия Saccharomyces boulardii при диарее, вызванной касторовым маслом, у крыс. Dig Dis Sci. 2003. 48 (4): 770–774. [PubMed] [Google Scholar] 70. Mascolo N, Izzo AA, Autore G, Barbato F, Capasso F. Диарея, вызванная оксидом азота и касторовым маслом. J Pharmacol Exp Ther. 1994. 268 (1): 291–295. [PubMed] [Google Scholar] 71. Гелдерблом Н, Вервей Дж., Нутер К., Спарребум А, Кремофор ЭЛ. недостатки и преимущества выбора носителя для лекарственного препарата.Eur J Cancer. 2001. 37 (13): 1590–1598. [PubMed] [Google Scholar] 73. Градишар В.Дж., Тюландин С., Дэвидсон Н. и др. Фаза III испытания связанного с альбумином паклитаксела в виде наночастиц по сравнению с паклитакселом на основе полиэтилированного касторового масла у женщин с раком груди. J Clin Oncol. 2005. 23 (31): 7794–7803. [PubMed] [Google Scholar] 74. Добыча касторового масла, процессы рафинирования касторового масла — CastorOil.in75. Абитогун А.С., Аладемейин О.Ю., Олое Д.А. Экстракция и характеристика касторового масла. Интернет J Nutr Wellness.2009. 8 (2): 1–8. [Google Scholar] 76. Мудхаффар Б., Салимон Дж. Эпоксидирование растительных масел и жирных кислот: катализаторы, методы и преимущества. J Appl Sci. 2010; 10: 1545–1553. [Google Scholar]

77. Кэмпбелл SJ, Nakayama N, Unger EH. United Oilseed Products Ltd; 1 157 883. Химическое рафинирование сырых растительных масел. Канадский патент 1983 г.

78. Акпан У.Г., Джимо А., Мохаммед А.Д. Экстракция, характеристика и модификация касторового масла. Леонардо журнал наук. 2006; 8: 43–52. [Google Scholar] 79.Прабхахаран М, Ракшит СК. Оптимизируйте условия для ферментативного рафинирования сырого соевого масла. Trop Agric Res Ext. 2011; 12 (2): 85–88. [Google Scholar] 80. Mag TK, Рейд МП. Непрерывный процесс контактирования триглицеридных масел с кислотой. 1980. [Google Scholar] 81. Dijkstra AJ. Ферментативное рафинирование. Eur J Lipid Sci Technol. 2010. 112 (11): 1178–1189. [Google Scholar] 82. Окулло А.А., Тему А.К., Огвок П., Нталиква Дж. В.. Физико-химические свойства биодизеля из ятрофы и касторового масла. Int J Renew Energy Res.2012; 2 (1): 47–52. [Google Scholar] 83. Hasenhuettl GL. Энциклопедия химической технологии Кирка-Отмера. John Wiley & Sons, Inc; 2000. Жиры и жирные масла. [Google Scholar] 84. Бхосле Б.М., Субраманиан Р. Новые подходы к снижению кислотности пищевых масел — обзор. J Food Eng. 2005. 69 (4): 481–494. [Google Scholar] 85. Консейсао М.М., Дантас М.Б., Розенхайм Р., младший, Фернандес В.Дж., Сантос ИМГ, Соуза АГ. Оценка времени окислительной индукции биодизельного топлива с этиловым клещевиной. J Therm Anal Calorim. 2009. 97 (2): 643–646.[Google Scholar] 86. Нотон ФК. Энциклопедия химической технологии Кирка-Отмера. John Wiley & Sons, Inc; 2000. Касторовое масло. [Google Scholar] 87. Список ГР. Отбеливание и очистка жиров и масел: теория и практика. Эльзевир; 2009. [Google Scholar] 88. Kheang LS, Foon CS, May CY, Ngan MA. Исследование остаточных масел, извлеченных из отработанной отбельной земли: их характеристики и применение. Am J Appl Sci. 2006. 3 (10): 2063–2067. [Google Scholar] 89. Дюмон М.-Дж., Нарине СС. Мыльный раствор и дезодорант-дистилляты из североамериканских растительных масел: обзор их характеристик, экстракции и использования.Food Res Int. 2007. 40 (8): 957–974. [Google Scholar] 90. Cvengros J. Физическая очистка пищевых масел. J Am Oil Chem Soc. 1995. 72 (10): 1193–1196. [Google Scholar] 91. Günç Ergönül P, Nergiz C. Влияние различных вспомогательных фильтрующих материалов и периодов зимовки на окислительную стабильность подсолнечного и кукурузного масел. CyTA J Food. 2015; 13 (2): 174–180. [Google Scholar] 92. Али М., Али Б. Справочник по промышленной химии: органические химические вещества. McGraw Hill Professional; 2005. [Google Scholar] 93. Лакшми Д.К.Н., Нараяна Сайбаба К.В., Король П., Гопинадх Р., Вайтал Кандиса Р., Найду Д.А.Хайдарабадский международный конференц-центр. Индия: Омикс Интернэшнл; 2012. Оптимизация технологических параметров производства касторового масла. [Google Scholar] 94. Cahoon EB, Кинни AJ. Производство растительных масел с новыми свойствами: использование геномных инструментов для исследования метаболизма жирных кислот растений и управления им. Eur J Lipid Sci Technol. 2005. 107 (4): 239–243. [Google Scholar] 95. Лу С., Фульда М., Уоллис Дж. Г., Обзор Дж. Высокопроизводительный скрининг генов клещевины, которые усиливают накопление гидроксижирных кислот в маслах семян трансгенного Arabidopsis.Плант Дж. 2006; 45 (5): 847–856. [PubMed] [Google Scholar] 96. Лин Дж. Т., Лью К. М., Чен Дж. М., Ивасаки Ю., МакКеон Т.А. Метаболизм 1-ацил-2-олеоил-sn-глицеро-3-фосфоэтаноламина в биосинтезе касторового масла. Липиды. 2000. 35 (5): 481–486. [PubMed] [Google Scholar] 97. Чан А.П., Крэбтри Дж., Чжао К. и др. Проект последовательности генома вида масличных семян Ricinus communis . Nat Biotechnol. 2010. 28 (9): 951–956. [Бесплатная статья PMC] [PubMed] [Google Scholar] 98. Риварола М., Фостер Дж. Т., Чан А. П. и др. Секвенирование генома органелл клещевины и анализ генетического разнообразия во всем мире.PLoS One. 2011; 6 (7): e21743. [Бесплатная статья PMC] [PubMed] [Google Scholar] 99. Хьюстон Н.Л., Хайдуч М., Телен Дж. Дж. Количественная протеомика заполнения семян клещевины: сравнение с соей и рапсом показывает различия между фотосинтетическим и нефотосинтетическим метаболизмом семян. Plant Physiol. 2009. 151 (2): 857–868. [Бесплатная статья PMC] [PubMed] [Google Scholar] 100. Jeong G-T, Park DH. Оптимизация производства биодизеля из касторового масла с использованием методологии поверхности отклика. Appl Biochem Biotechnol. 2009. 156 (1–3): 1–11.[PubMed] [Google Scholar] 101. Рамезани К., Роушанзамир С., Эйкани М.Х. Реакция переэтерификации касторового масла. Кинетическое исследование и оптимизация параметров. Энергия. 2010. 35 (10): 4142–4148. [Google Scholar] 102. Кылыч М, Узун ББ, Пютюн Э, Пютюн АЭ. Оптимизация производства биодизеля из касторового масла с использованием факторного дизайна. Fuel Process Technol. 2013; 111: 105–110. [Google Scholar] 103. Варма М.Н., Мадрас Г. Синтез биодизельного топлива из касторового масла и льняного масла в сверхкритических жидкостях. Ind Eng Chem Res.2007. 46 (1): 1–6. [Google Scholar]

Катионно-контролируемые смачивающие свойства вермикулитовых мембран и их перспектива для стойкого к загрязнению разделения масла и воды

Изготовление ламинатов вермикулита

Дисперсия вермикулита была получена из термически расширенного вермикулита (Sigma Aldrich, Великобритания) с помощью двухкомпонентного ступенчатый метод ионного обмена, как сообщалось ранее 9,11 . 50 мг гранул вермикулита добавляли к 100 мл насыщенного раствора NaCl (36 мас.%) И перемешивали при кипячении с обратным холодильником при 100 ° C в течение 24 ч для замены межслоевых катионов (Mg 2+ ) на Na + .Затем раствор фильтровали, и собранные хлопья вермикулита повторно промывали водой и этанолом для удаления любых остаточных солей. Затем объемный вермикулит, подвергнутый обмену натрием, диспергировали в 100 мл 2 М раствора LiCl и кипятили с обратным холодильником в течение 12 ч с последующей фильтрацией и интенсивной промывкой водой и этанолом. Отфильтрованный продукт снова диспергировали в 100 мл свежего 2 М раствора LiCl в течение еще 12 часов для обеспечения полного обмена. Полученные таким образом хлопья вермикулита лития (LiV) обрабатывали ультразвуком в воде в течение 20 минут, чтобы расслоить их на однослойные хлопья LiV, а затем центрифугировали при 3000 об / мин для удаления любых многослойных и объемных остатков, оставшихся в растворе.Толщину и поперечные размеры (~ 1 × 1 мкм) вспученных вермикулитовых чешуек (дополнительный рис. 1) измеряли с помощью АСМ Bruker Dimension Fast Scan, работающей в режиме постукивания пикового усилия. Электронно-микроскопические исследования чешуек проводили с использованием просвечивающего электронного микроскопа FEI Talos F200X, работающего при ускоряющем напряжении 200 кВ.

LiV-ламинаты толщиной ≈5 мкм были приготовлены вакуумной фильтрацией LiV-дисперсии через мембранный фильтр Whatman Anodisc из оксида алюминия (0.Размер пор 2 мкм и диаметр 25 или 47 мм). Полученные пленки вермикулита на фильтрах из оксида алюминия отделялись от подложки для получения свободно стоящих LiV-ламинатов (рис. 1). Другие катионообменные V-ламинаты были приготовлены погружением LiV-ламината в 1 М водный раствор хлорида желаемого катиона на час.

Многослойные материалы GO, использованные для сравнения, также были приготовлены вакуумной фильтрацией, как сообщалось ранее 2 . Вкратце, водную суспензию GO, полученную обработкой ультразвуком в ванне хлопьев оксида графита (приобретенные у BGT Materials Limited), фильтровали под вакуумом через фильтры из оксида алюминия Anodisc для получения свободно стоящих ламинатов GO.Катионно-модифицированные GO-мембраны для измерения краевого угла смачивания (дополнительный рис. 4) были приготовлены, как сообщалось ранее 28 , путем погружения GO-мембраны (5 мкм) в 1 M соответствующего водного раствора хлорида на 1 час с последующей промывкой водой. .

Характеристика вермикулитовых ламинатов

Мы использовали атомно-эмиссионную спектрометрию с индуктивно связанной плазмой (ICP-AES) и дифракцию рентгеновских лучей (XRD), чтобы охарактеризовать V-ламинаты. Анализ ICP-AES обеспечил концентрацию межслойных катионов в V-ламинатах и ​​подтвердил эффективный катионный обмен.Образцы для анализа ICP-AES были приготовлены путем переваривания V-ламината в смеси 1 мл 38% -ной HCl и 1 мл 70% -ной HNO 3 в течение ночи. Образцы нагревали до 70 ° C на горячем блоке в пробирках перед добавлением деионизированной воды до 10 мл. Концентрация катионов, присутствующих в V-слоистых материалах, оценивалась в молях на мг сухого V-слоистого материала и показана в дополнительной таблице 1. Используемый здесь метод катионообмена эффективно заменяет исходные катионы в слоистых материалах на представляющие интерес катионы.Например, концентрация ионов Li в ламинате KV, полученная путем замены ионов Li на ионы K, ниже предела обнаружения прибора (дополнительная таблица 1). Следует отметить, что -ион K + присутствует во всех слоистых материалах и исходном насыпном вермикулите, поскольку он прочно связывается с поверхностью вермикулита 26,33 . Тем не менее, в ламинатах KV концентрация K-ионов значительно выше, чем в других ламинатах.

Эксперименты XRD были выполнены для изучения ламинарной структуры и свойств набухания V-ламинатов толщиной 5 мкм.Мы использовали тонкопленочную рентгенографическую систему Rigaku smart lab (Cu-Kα-излучение), работающую на 1,8 кВт. Для получения XRD от сухих V-ламинатов сначала все образцы сушили в вакууме и хранили в перчаточном ящике в течение 48 часов. Обезвоженные образцы были запечатаны в герметичном держателе рентгеновских образцов внутри перчаточного бокса 2,34 и извлечены для дальнейших измерений XRD. Затем те же ламинаты подвергались воздействию окружающего воздуха (относительная влажность ~ 40%) в течение 24 ч и измерения были повторены. Для влажной XRD ламинаты замачивают в соответствующей жидкости минимум на 30 мин, а затем сразу получают данные дифракции.

Измерение краевого угла смачивания

Для измерения краевого угла смачивания воды на ламинатах использовался метод проточной капли (анализатор формы капли KRÜSS, DSA100S). Отдельно стоящие ламинаты помещали на дырчатый плоский столик таким образом, чтобы центральная часть ламината находилась над отверстием. Для точного контроля объема капли (2 мкл) использовали иглу микрошприца. Игла медленно опускалась до тех пор, пока капля не коснулась ламинатов вермикулита, а затем осторожно поднималась. Модуль измерения угла смачивания работал в видеорежиме со скоростью захвата 60 кадров в секунду.

PA-мембраны с вермикулитовым покрытием

PA-мембраны с вермикулитовым покрытием, используемые для изучения разделения необрастающего масла, воды и эмульсии, были приготовлены путем фильтрации дисперсии вермикулита через пористую подложку из PA (гидрофильные мембранные фильтры EMD Millipore ™ PA толщиной 170 мкм с Диаметром 47 мм) с использованием тупиковой системы фильтрации под давлением (Sterlitech HP4750, избыточное давление 1 бар) с последующей сушкой в ​​вакууме в течение ночи. Были изготовлены вермикулитовые покрытия толщиной 15, 30, 45, 60, 75 и 90 нм.Толщина покрытия оценивалась по формуле:

$$ t = \ frac {{C \ times V}} {{A \ times D}} $$

(1)

, где t — толщина покрытия, C — концентрация дисперсии вермикулита, V — объем нанесенной дисперсии, A — площадь покрытия, а D — плотность вермикулитовой пленки. Плотность вермикулитовой пленки получали путем измерения веса и объема толстого (≈15 мкм) отдельно стоящего V-образного ламината.Чтобы дополнительно подтвердить толщину LiV-покрытия на PA, мы провели жесткую рентгеновскую фотоэлектронную спектроскопию (HAXPES) на LiV-покрытом PA толщиной ~ 40 нм с использованием лабораторной высокопроизводительной системы HAXPES от Scienta Omicron GmbH, детали которой изложены в Ref. 35 . Система включает струйный источник рентгеновского излучения на основе металлического галлия (Excillum, Швеция), монохроматор на заказ и анализатор энергии электронов EW-4000. Моделирование неупругого фона выполняется с помощью программного обеспечения QUASES-Tougaard 36,37 (www.quases.com). Анализ фона неупруго рассеянных электронов — хорошо зарекомендовавший себя метод исследования атомных распределений, в ~ 20 раз превышающих длину свободного пробега неупругих электронов (IMFP, λ ) 38,39,40 . Одним из основных требований для увеличения глубины выборки на многие десятки нм является источник рентгеновского излучения высокой энергии (> 5000 эВ), поскольку IMFP электрона определяется кинетической энергией электрона 41 . Здесь, используя металлический струйный источник рентгеновского излучения Ga Kα 9,25 кэВ лабораторного HAXPES, мы зафиксировали пик Si 1s и его фон (или функцию потерь энергии) на протяжении сотен эВ до более высокой энергии связи (более низкой кинетической энергии).Затем моделирование этого фона используется для расчета толщины образца. Два входных параметра, необходимых для моделирования неупругого фона, — длина неупругого свободного пробега и сечение неупругого рассеяния, рассчитываются по формуле ТПП-2М 41 .

Дополнительный Рис. 24 показывает экспериментальный спектр Si-1s от LiV, нанесенного на подложку PA, и смоделированный неупругий фон с использованием неупругого среднего пути 14,6 нм. 42 . В модели предполагается островная модель с 90% покрытием вермикулитового слоя.Подгонка к экспериментальным данным показывает, что толщина силикатного слоя составляет 37 ± 3 нм, что согласуется с оценкой, основанной на уравнении (1).

Размер пор до точки кипения (наибольший размер пор) полиамидных мембран, покрытых вермикулитом, был определен с использованием методики проточной порометрии (POROLUX ™ 1000) 43,44 . Мембраны полностью смачивали жидкостью с низким поверхностным натяжением (раствор перфторполиэфир / порофил), а затем герметично закрывали внутри камеры для образца. Газообразный азот пропускали в камеру, чтобы вытеснить смачивающую жидкость из пор мембраны.Давление, при котором газ N 2 преодолевает капиллярное давление жидкости и начинает течь через влажный образец, дает размер пор в точке кипения 43 , который определяется выражением

$$ D = \ frac {4 \ gamma cos \ theta}} {P} \; \ приблизительно \, \ frac {{4 \ gamma}} {P} $$

(2)

, где D — размер / диаметр пор мембраны, γ, — поверхностное натяжение смачивающей жидкости, P — давление и θ — угол смачивания жидкости.

Полиамидные мембраны, покрытые гидрогелем и полипамином Гидрогель получали путем фотоинициируемой полимеризации с ациламидом, лапонитом и 1-гидроксициклогексилфенилкетоном в качестве предшественника, сшивающего агента и инициатора соответственно

46 . Химические вещества растворяли в воде в соотношении 50: 1,5: 1 по массе с последующим УФ-излучением (365 нм) в течение 2 часов.Покрытие из полидофамина и гидрогеля наносится на мембранный фильтр PA путем погружения мембраны в суспензию на 4 часа.

Разделение эмульсии с использованием мембраны, покрытой LiV

Исходную эмульсию масла в воде готовили растворением 100 мг додецилбензолсульфоната натрия в 1 л воды с последующим смешиванием с 1 г керосина / гексана / петролейного эфира / растительного масла. . Смесь обрабатывали ультразвуком и перемешивали в течение 1 ч до получения стабильной (стабильной в течение недели) молочной эмульсии.

Для тупиковой фильтрации эмульсия заливалась в сосуд высокого давления, снабженный мембраной, и масса пермеата (при давлении подачи 1 бар) регистрировалась каждые 30 с в течение 30 минут с помощью компьютера, подключенного к интерфейсу. электронные весы (Ohaus, Navigator NV).Через каждые 30 мин мембрану замачивали в деионизированной воде для удаления капель адсорбированного масла с поверхности мембраны и повторяли разделение эмульсии. Этот процесс выполняется в течение 15 циклов, и поток пермеата непрерывно контролируется, как показано на дополнительном рис. 9.

Разделение эмульсии с поперечным потоком осуществлялось с использованием системы фильтрации с поперечным потоком Armfield FT17. Перед фильтрацией эмульсии деионизированную воду фильтровали через мембрану (площадь 1 см 2 ) в течение 6 часов до получения устойчивого потока воды.Затем эмульсию выливали в питающий резервуар и фильтровали через мембрану при давлении подачи 1 бар и скорости поперечного потока от 0,05 м с -1 до 0,5 м с -1 (дополнительный рис. 10). Этот процесс осуществляли в течение 15 часов непрерывно, и массу пермеата регистрировали с помощью электронных весов, подключенных к компьютеру (Ohaus, Navigator NV).

Эффективность фильтрации мембран как для тупиковой, так и для поперечной фильтрации была охарактеризована с точки зрения потока пермеата (рис.3c и дополнительный рис. 9) и общее содержание органических веществ в пермеате. Во время тупиковой фильтрации PA с покрытием LiV и голая PA-мембрана имеют начальный поток пермеата ≈6500 л · м -2 ч -1 , и он уменьшается на 90% в первые 30 минут фильтрации. процесс. Однако исходный поток пермеата полностью восстанавливался для мембраны PA, покрытой LiV, в последовательных циклах фильтрации после простой промывки водой (дополнительный рис. 9). Уменьшение потока и его восстановление в каждом цикле фильтрации происходит за счет осаждения капель масла на поверхности мембраны и их удаления путем пропитки водой, соответственно.С другой стороны, начальный поток пермеата непрерывно снижался для чистого PA после каждого цикла фильтрации и снижался до ≈10% от начального потока пермеата после 15-го цикла (рис. 3c).

Количество нефти, проникающей через мембрану, измеряется с помощью анализатора содержания общего органического углерода (TOC) (анализатор Shimadzu TOC-VCPN). Эффективность разделения мембраны с LiV-покрытием рассчитывалась путем удаления масла ( R ) по формуле

$$ R = \ left ({1 — \ frac {{C_p}} {{C_f}}} \ right) \ раз 100 $$

(3)

, где C p и C f — общее содержание углерода в собранном пермеате и исходной эмульсии, соответственно.На дополнительном рис. 14 показано удаление масла для PA-мембраны с покрытием LiV для эмульсий различного типа, приготовленных из разных масел.

Испытание фильтрации эмульсии соленой воды проводили с использованием фильтрации с поперечным потоком со скоростью поперечного потока 0,05 м / с -1 при давлении 1 бар. Перед добавлением соли как покрытые, так и непокрытые мембраны подвергались 15-часовой непрерывной фильтрации эмульсии, так что поток достиг стационарного состояния. Затем в питающий резервуар медленно добавляли соль NaCl или KCl до тех пор, пока не будет достигнута требуемая концентрация солевого раствора (дополнительный рис.15). После этого поток пермеата во время фильтрации с поперечным потоком регистрировали непрерывно в течение 100 мин.

Смачивающие свойства PA-мембран с покрытием LiV

Анализатор формы капли KRÜSS (DSA100S) был использован для проведения всех измерений смачивания. Время смачивания LiV-покрытой PA мембраны изучали путем регистрации времени, необходимого для полного распределения 2 мкл воды, упавшей на поверхность мембраны 30 . Для точного измерения времени смачивания видеокамера высокого разрешения работала со скоростью захвата 60 кадров в секунду.Например, время смачивания капли воды объемом 2 мкл, добавленной к PA-мембране, покрытой LiV, с размером пор ~ 1 мкм (толщина покрытия ~ 30 нм) составило ~ 0,8 с, тогда как капля на голом PA заняла ~ 1,4 с для полного распространения (дополнительный рис. 8a). Дополнительный рис. 8b показывает изменение времени смачивания в зависимости от толщины покрытия LiV или размера пор мембраны с покрытием LiV. Было обнаружено, что ~ 30 нм — это оптимальная толщина покрытия LiV, необходимая для кратчайшего времени смачивания.Более высокая толщина покрытия приводит к меньшему размеру пор и меньшей шероховатости поверхности и, следовательно, к увеличению времени смачивания. Для покрытия толщиной ≤30 нм мы не обнаружили каких-либо значительных изменений среднеквадратичной шероховатости мембраны по сравнению с голой PA-мембраной (дополнительный рис. 25). В основном это связано с гибкой природой двумерных чешуек вермикулита, которая помогает повторять текстуру лежащей под ней мембраны ПА.

Подводные измерения угла смачивания проводились, как сообщалось ранее 47 .Изготовленная на заказ кварцевая ячейка использовалась в качестве резервуара для воды, где мембрана с покрытием LiV была закреплена покрытой стороной вниз на верхней части контейнера. Дно ячейки было соединено с микрошприцем, через которое капли масла выпускались и всплывали на поверхность мембраны. Подводный краевой угол смачивания маслом чистого ПА составил 150 ± 4 °, тогда как после покрытия 30 нм LiV он увеличивается до 168 ± 3 ° (дополнительный рис. 18).

Такая же установка для подводного угла смачивания использовалась для измерения угла скатывания.Для испытания угла скатывания капля масла (10 мкл) выдавливалась из микрошприца на поверхность образца, погруженного в воду. Затем предметный столик медленно наклоняли (10 ° мин. -1 ) до тех пор, пока капля масла не соскользнула с исходного положения. Весь процесс регистрировался каждые 400 мс с помощью камеры высокого разрешения, а угол скатывания определялся путем отслеживания движения капли относительно ее исходного положения (дополнительные рисунки 11, 16).

Измерение силы адгезии масла

Силы адгезии масла под водой были измерены, как сообщалось ранее 48 , с использованием высокочувствительной системы микроэлектромеханических весов (DCAT250, Data Physics).Весь процесс измерения включает три основных этапа: продвижение, соприкосновение и отступление. Силы регистрировались на протяжении всего шага с помощью высокочувствительных микроэлектромеханических весов. Сначала каплю масла (10 мкл) подвешивали на металлической крышке, прикрепленной к весам. Во время процесса продвижения (этап 1 на рис. 3d) образцы мембраны, погруженные в воду, прикрепленную к столику, медленно поднимаются со скоростью 0,05 мм / с -1 до тех пор, пока поверхность мембраны не соприкоснется с каплей масла.После контакта была приложена фиксированная предварительная нагрузка (10 мкН) (шаг 2 на рис. 3d). Затем столик движется вниз со скоростью 0,02 мм с -1 (отступая, шаг 3 на рис. 3d), что приводит к отрыву капли масла от поверхности образца. Во время этого процесса отделения в определенном месте капля полностью отделяется от поверхности образца, на что указывает резкое падение кривой силы (этап 4 на рис. 3d). Изменение силы во время этого внезапного шага отслоения было принято за максимальную силу сцепления.Для образцов без покрытия PA эта сила составляет 35,4 ± 3,5 мкН. Однако для PA с покрытием LiV не было замечено явного резкого падения силы, что свидетельствует о незначительной силе адгезии 48 (ниже предела обнаружения 1 мкН). Мы использовали 1,2-дихлорэтан, гексан и толуол, чтобы воспроизвести масло для этих измерений, и не заметили каких-либо существенных различий между различными растворителями.

Влияние ионной силы на угол смачивания

Чтобы изучить влияние поверхностной плотности заряда на угол смачивания V-ламинатов, мы измерили угол смачивания при различных концентрациях (0.0001–1 М) солевых растворов. Известно, что при высокой ионной силе плотность поверхностного заряда уменьшается из-за сжатия двойного электрического слоя 49 и, следовательно, изучение изменения краевого угла смачивания с ионной силой непосредственно исследует его зависимость от плотности поверхностного заряда. Эти измерения проводились путем исследования краевого угла смачивания различных V-образных ламинатов с использованием солевого раствора различной концентрации. Чтобы избежать ионного обмена во время измерения краевого угла смачивания, мы использовали раствор соли, соответствующий межслойным катионам V-ламинатов (например,г., раствор LiCl для LiV-ламината и KCl для KV-ламината). На дополнительном рис. 19 показан угол смачивания как функция концентрации солевого раствора для пяти различных V-образных ламинатов. Для всех пяти типов V-образных ламинатов угол смачивания не показал значительного изменения ионной силы. Следует также отметить, что для ламинатов LaV и SnV угол смачивания незначительно изменяется при более высокой концентрации солевого раствора. Это связано с изменением pH (солевой раствор становится более кислым) солевого раствора при этих концентрациях.

Измерения дзета-потенциала

Чтобы дополнительно подтвердить отсутствие корреляции между поверхностной плотностью заряда и краевым углом, мы измерили дзета-потенциал различных V-ламинатов и его зависимость от ионной силы с помощью метода потокового потенциала (Anton Paar SurPASS3). Эти измерения проводились путем помещения двух ламинатов V-образной формы внутрь измерительной ячейки, образующих капилляр высотой 100 мкм. Затем испытательная жидкость (смесь LiCl и KCl) с известной ионной силой впрыскивалась через капилляр при определенном давлении (200-600 мбар) и измерялась разность потенциалов между двумя концами проточного канала как потенциал потока. .Мы использовали смешанные растворы 0,01 M LiCl и KCl в качестве стандартных электролитов для измерения потенциала течения, поскольку электролит LiCl: KCl 1: 1 считается инертным по отношению к взаимодействию с поверхностью 50 . Кроме того, поскольку время для каждого измерения очень короткое (<30 с), эффект ионного обмена минимален.

Для образцов с плоской поверхностью его дзета-потенциал можно связать с потенциалом течения уравнением Гельмгольца-Смолуховского 50,51 :

$$ \ xi = \ frac {{dU_ {str}}} {{d \ Delta p}} \ times \ frac {\ eta} {{\ varepsilon \ times \ varepsilon _ {\ mathrm {o}}}} \ times \ kappa $$

(4)

, где U str — измеренный потенциал потока при заданном поперечном капиллярном давлении Δ p , κ — проводимость капилляра, а η и ε × ε o — вязкость и диэлектрический коэффициент раствора электролита.

Дополнительный Рис. 19b показывает дзета-потенциал для различных V-образных ламинатов. Мы обнаружили, что LiV имеет максимальный дзета-потенциал, и он уменьшается почти до нуля для LaV и SnV с многовалентными ионами в качестве межслоевых катионов. Это может быть связано с нейтрализацией заряда отрицательно заряженного силикатного слоя положительно заряженными катионами 52 . Несмотря на то, что изменение дзета-потенциала качественно коррелирует с изменением угла смачивания (ламинаты с более высоким дзета-потенциалом показывают минимальный угол смачивания), большое изменение угла смачивания для LiV-ламинатов по сравнению с другими ламинатами не коррелировало с измерениями дзета-потенциала. .Это отсутствие корреляции между дзета-потенциалом и краевым углом дополнительно подтверждается измерением зависимости дзета-потенциала от ионной силы. Как показано на дополнительном рис. 19b, дзета-потенциал уменьшается с увеличением ионной силы, как и ожидалось, тогда как краевой угол в значительной степени не зависит от ионной силы. {1/2} $$

(5)

, где γ l — поверхностное натяжение жидкости, γ l d , γ l

p

и полярные составляющая поверхностного натяжения смачивающей жидкости, соответственно, и γ s d , γ s p — дисперсионная и полярная составляющие твердой поверхности. энергии соответственно.Компонент поверхностной энергии ламинатов может быть определен по формуле. (5) путем измерения краевого угла смачивания жидкостей с известными полярными и дисперсионными компонентами 55 . Мы использовали данные краевого угла смачивания неполярной апротонной жидкости (дииодметан 56 , γ l = 50,8 м Нм −1 , γ l p = 0 и γ l d = 50,8 м Нм −1 ) и полярная протонная жидкость (вода 56 , γ l = 72.8 м Нм −1 , γ l p = 51 м Нм −1 и γ l d = 21,8 м Нм −1 ) на V-образных пластинах (Дополнительная таблица S2) и рассчитали γ s d и γ s p (дополнительный рисунок 20). Полная поверхностная энергия ( γ с ) V-ламината может быть рассчитана как в формуле.p, $$

(6)

Оптимизация геометрии теории функционала плотности (ДПФ)

Расчеты спин-поляризованного ДПФ были выполнены с использованием программного пакета CP2K 57 с использованием алгоритма Quickstep с функциональным блоком PBE-D3 58,59 , псевдопотенциалами Годекера – Тетера – Хаттера 60,61 , отсечка плоской волны 350 Ry, относительная отсечка 60 Ry и молекулярно оптимизированный базис DZVP 62 .

Кристаллическая структура голой поверхности вермикулита была оптимизирована сначала путем оптимизации объема элементарной ячейки структуры вермикулита, пока полная энергия не сойдется в пределах 10 -4 эВ, после чего была проведена оптимизация ионных положений до тех пор, пока полная энергия сведена к 10 −4 эВ.Мы изучаем модельную систему, в которой 25% атомов кремния в базисной плоскости структуры вермикулита были замещены алюминием, что привело к чистому поверхностному заряду -2e на элементарную ячейку, что является типичным для природного вермикулита . 33 . В каждом случае мы помещаем на поверхность вермикулита заряд, уравнивающий количество катионов.

Пленка жидкой воды Моделирование с помощью AIMD

Пленки воды на поверхности вермикулита были исследованы на содержание Li и K с использованием той же структурной модели, которая описана выше.Для каждого иона были подготовлены четыре независимые поверхности вермикулита в комбинациях их оптимизированных для вакуума положений. Для моделирования AIMD использовалась суперячейка вермикулита 2 × 1 с параметрами решетки в плоскости 10,62 × 9,20 Å. К ним над оголенной поверхностью вермикулита подводили 30 Å вакуума. Затем поверхность гидратировали с помощью 40 молекул D 2 O. Дейтерированная вода используется, чтобы уменьшить необходимость учитывать ядерные квантовые эффекты и позволить использовать временной шаг 0.5 фс. Моделирование реплик проводилось в ансамбле NVT при 300 K с использованием термостата цветного шума 63 и уравновешивалось в течение 5 пс перед сбором статистики для анализа. После оптимизации и уравновешивания между поверхностью жидкой пленки и периодическим изображением поверхности вермикулита оставалось ~ 20 Å вакуума. Всего было проанализировано время моделирования 35 пс для системы K и 40 пс для литиевой системы.

Угловые распределения молекул воды

Мы используем две метрики для изучения углового распределения молекул воды над поверхностью вермикулита.Обозначим угол между направлением связей O – H молекул воды и нормой к поверхности вермикулита как θ . Мы также вычисляем угол между базисной плоскостью вермикулита и плоскостью, проходящей через все три атома молекулы воды, который мы обозначим как φ . Это показано на дополнительном рисунке 23.

Расчет энергии связи воды

Энергия связи воды была оценена для молекул воды в первом и втором контактных слоях воды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *