Полезные аминокислоты: Как выбрать аминокислоты, советы по выбору и отзывы

Содержание

Аминокислоты, без которых нам не жить

 

Аминокислоты называют «строительным материалом» при синтезе в организме человека целого ряда белков. И любой белок – это цепочка из аминокислот, которые в определённой последовательности соединены между собой. При отсутствии хотя бы одной аминокислоты происходит сбой.

Из двадцати известных аминокислот, восемь являются незаменимыми. То есть сам организм синтезировать их не может, поэтому должен получать их вместе с пищей. Если же он их не получает, то нарушается работа нервной системы, водно-солевой обмен и многие другие функции в организме.

К незаменимым кислотам относятся:

Валин, который с лейцином и изолейцином участвует в синтезе тканей тела и стимулирует их рост, все трое они служат источником энергии в мышечных клетках.

Валин отвечает за мышечную координацию, понижает чувствительность организма к жаре, холоду и боли, поддерживает уровень гормона «счастья» – серотонина.

Содержится: в мясе, грибах, бобовых, зерновых, арахисе и молочных продуктах.

Лейцин необходим для активизации умственной деятельности и хорошей памяти, он защищает мышечные волокна от повреждений, восстанавливает кожные покровы, мышцы и кости, стимулирует гормон роста и снижает уровень сахара в крови. Содержится в нежирном мясе, печени, рыбе, твороге, молоке, натуральном йогурте, кефире, гречихе, чечевице, овсе, неочищенном рисе, люцерне.

Изолейцин так же отвечает за уровень сахара в крови, обеспечивает энергией все к летки и повышает выносливость. Содержится: в мясе птицы, печени, рыбе, яйцах, бобовых, чечевице, во ржи, миндале, кешью, сое, семечках.

Лизин отвечает за работу мозга и ясное мышление до глубокой старости, поддерживает энергию и следит за здоровьем сердца, оказывает сопротивление вирусам, способствует усвоению кальция, восстанавливает ткани, формируя коллаген. Содержится в мясе птицы, рыбе, молочных продуктах, бобовых, кукурузе, орехах, семечках, какао, в горьком шоколаде.

Метионин снижает содержание холестерина и улучшает работу печени, препятствует развитию депрессии.

Содержится в рыбе, желтке яиц, бобовых, зелёном горошке, гречихе, капусте, моркови, в апельсинах, арбузах и дыне.

Треонин – препятствует ожирению печени, участвует жировом и белковом обмене, повышает иммунитет. Содержится: в яйцах, молочных продуктах, бобовых, орехах.

Триптофан нормализует психическое состояние, отвечает за нормальное функционирование мозга и замедляет общее старение организма. Кроме того снижает аппетит и способствует повышению выработки гормона роста. Содержится в мясе птицы, рыбе, молоке, твороге, бобовых, орехах, кунжуте, бананах, в винограде и таких сухофруктах, как курага, инжир, финики.

Фенилаланин снижает аппетит и повышает настроение, а так же отвечает за быстроту реакций и уменьшает чувствительность организма к боли. Содержится он в говядине, курином мясе, рыбе, яйцах, твороге, молоке, сметане.

Получается, что для того, чтобы обеспечить организм незаменимыми аминокислотами, нужно потратить не так уж много денег.

Бобовые, злаки, семечки, овощи стоят недорого, мясо птицы, молочные продукты, яйца тоже доступны, есть недорогие сорта рыбы. Дорогими можно назвать только шоколад, орехи и некоторые сухофрукты. Но и их в небольшом количестве можно себе позволить – те же финики и курагу в виде перекуса на работе вместо тоже недешёвых конфет.

Для того чтобы сохранить здоровье, врачи советуют не забывать о крестоцветных – всех видах капусты, о цитрусовых и листовых огородных травах. А так же об оливковом и подсолнечном масле.

Всё это вместе снизит риск развития сердечно-сосудистых заболеваний, инсультов, помешает образованию склеротических бляшек и развитию слабоумия в старости.

Что такое аминокислоты и чем они важны для организма

Аминокислоты являются строительным материалом, из которого в организме образуются белки. Вещества жизненно важны для функционирования всех систем органов. Если организм не может «собрать» определенный белок, это приводит к серьезному нарушению его работы.

Для чего нужны аминокислоты

Аминокислотами называются органические соединения, из которых состоят все ткани человеческого тела. Они отвечают за процессы метаболизма и энергетический обмен, обеспечивая работу организма. Аминокислоты напрямую влияют на состояние нервной системы, регулируя умственную деятельность, настроение и сон.

Эти компоненты необходимы для формирования мышц, сухожилий и связок, а также волос и кожи. Без достаточного количества аминокислот невозможен активный рост мышечной массы. В спорте и фитнесе аминокислоты повышают работоспособность атлета и ускоряют процесс наращивания мышц. Они помогают быстрее восстанавливаться после тяжелых тренировок и снимают мышечные боли.

ТОП 5 лучших Аминокислот

к содержанию ↑

Важность аминокислот для организма

Полезные свойства аминокислот:

  • создание новых клеток;
  • регенерация тканей;
  • поддержка иммунитета;
  • увеличение мышечной массы;
  • нормальное протекание метаболических процессов;
  • избавление от лишнего веса;
  • укрепление нервной системы и повышение концентрации внимания;
  • обеспечение организма дополнительной энергией;
  • улучшение состояния кожи, ногтей, волос.

Аминокислоты обладают антиоксидантными свойствами. Эти вещества заметно понижают процессы старения, сохраняя кожу молодой и эластичной. Также они стимулируют половое влечение и повышают либидо.

к содержанию ↑

Виды аминокислот

Все аминокислоты делятся на незаменимые и заменимые. Также есть частично заменимые вещества, которые синтезируются в человеческом организме в недостаточном количестве. Они могут вырабатываться только в конкретных условиях или в определенном возрастном периоде.

К частично заменимым веществам относятся цистеин, гистидин, тирозин, а также аргинин, не вырабатывающийся у детей и подростков. Источниками частично заменимых аминокислот являются нежирное мясо, соевые бобы, арахис, семена тыквы, сыр, чечевица.

Для полноценной работы организм задействует 22 аминокислоты, из которых 10 веществ синтезирует самостоятельно. Остальные 9 компонентов необходимо получать из пищи или биологически активных добавок. В рационе также должна присутствовать пища, богатая частично заменимыми аминокислотами.

к содержанию ↑

Незаменимые

Незаменимыми аминокислотами (ВСАА) называются вещества, которые не вырабатываются организмом человека. Они могут поступать только с пищей либо синтетическими биодобавками.

В категорию незаменимых аминокислот включены 9 веществ:

  • валин — стимулятор, важный для мышечного метаболизма и восстановления после нагрузок;
  • гистидин — компонент гемоглобина, стимулирует рост и восстановление тканей;
  • лейцин — характеризуется анаболическим действием, защищает мышечные ткани, а также эффективен в лечении артритов;
  • изолейцин — способствует образованию гемоглобина, ускоряет мышечный рост, помогает клеткам усваивать глюкозу;
  • треонин — отвечает за баланс белковых соединений в организме;
  • метионин — гепатопротектор, обладает метаболическим действием;
  • лизин — отличается бактерицидными свойствами, укрепляет иммунные силы;
  • триптофан — иммунопротектор, участвует в синтезе гормона счастья — серотонина;
  • фенилаланин — важный компонент, применяющийся при лечении многих заболеваний (витилиго, СДВГ, депрессивных расстройствах).
к содержанию ↑

Заменимые

К числу заменимых аминокислот относятся вещества, которые синтезируются самим организмом. В основном, вырабатываются они в печени.

Перечень заменимых аминокислот:

  • аспарагин — участвует в выработке аммиака, нужен для нормальной работы нервной системы;
  • аланин — является компонентом белка и биологически активных веществ;
  • пролин — является неотъемлемой частью белка коллагена;
  • глицин — входит в состав биологически активных соединений, выполняет роль рецептора в головном и спинном мозге;
  • карнитин — участвует в транспортировке жирных кислот;
  • таурин — играет важную роль в обмене липидов, ускоряет заживление ран;
  • серин — строительный материал для креатина, участвует в трансформации гликогена;
  • орнитин — обладает антикатаболическими свойствами, применяется в спортивной медицине;
  • глютамин — обеспечивает рост мышц и крепкий иммунитет;
  • глютаминовая кислота — выполняет функцию рецептора.
к содержанию ↑

Аминокислоты в продуктах: где и сколько

Аминокислотами богаты многие пищевые продукты. Рекордсменами по содержанию полезных веществ признаны бобовые, морепродукты, мясо, а также различные сорта орехов.

Plant-based sources of Omega-3 acids

Таблица содержания незаменимых аминокислот в продуктах питания
(в граммах на 100 граммов продукта)
 

                 

к содержанию ↑

Аминокислоты для похудения

Аминокислоты оптимизируют метаболизм, помогая организму избавляться от жировых накоплений. Они снижают аппетит и способствуют быстрому насыщению, помогая быстрее сжигать жиры. Какие же аминокислоты наиболее эффективны для избавления от лишнего веса?

В первую очередь, это незаменимые аминокислоты — валин, лейцин, изолейцин. Вещества, принятые сразу после тренировки, защищают мышечные волокна от разрушения. Поэтому организм, вместо расщепления собственного белка, для восполнения энергии использует жир.  Этот способ позволяет существенно сократить массу телу, если сочетать его с активным тренировочным режимом.

Две другие аминокислоты — тирозин и триптофан — регулируют объем глюкозы в крови, подавляя чувство голода. Они будут эффективны для похудения без тренировок, в сочетании с диетическим питанием.

В процессе жиросжигания эффективна аминокислота аргигин. Ее действие обусловлено сосудорасширяющим действием. Это помогает организму ускорять транспортировку полезных компонентов по сосудам, тем самым быстрее избавляя ткани от жира. Аргинин также усиливает синтез гормона роста, который является серьезным врагом лишних килограммов.

Большим преимуществом аминокислот является то, что они не обладают катаболическим действием. В процессе похудения вещества воздействуют исключительно на подкожный жир, не затрагивая мышцы. Кроме того, прием аминокислот повышает физическую активность человека, что также способствует сжиганию лишнего жира в организме.

к содержанию ↑

Список важных аминокислот для тех, кто занимается спортом

При нехватке аминокислот в организме значительно снижаются физические показатели. Это чревато не только низкими спортивными результатами, но и риском получения тяжелых травм. Все без исключения аминокислоты важны для здоровой жизнедеятельности организма. Однако в обширном перечне аминокислот содержатся вещества, которые незаменимы для успешной спортивной деятельности.

Кратко перечислим самые важные из них:

  1. Метионин. Отвечает за работу пищеварения, участвует в образовании глюкозы. Эффективно расщепляет жиры, уменьшает выраженность болевых ощущений в мышцах.
  2. Валин. Способствует восстановлению поврежденных тканей. При нехватке компонента нарушается двигательная координация, развиваются болезни нервной системы.
  3. Фенилаланин. Обладает свойством снижать аппетит и положительно влиять на психоэмоциональное состояние. Улучшает показатели памяти, повышает концентрацию внимания.
  4. Триптофан. Помогает синтезировать гормон роста, укрепляет сердечную мышцу. Служит эффективной профилактикой депрессии и бессоннице. Острая нехватка триптофана ведет к сахарному диабету.
  5. Лейцин. Необходим для построения мышц, отвечает за синтез белка в мышечных волокнах. Активно подавляет катаболизм, заряжает клетки энергией.
  6. Изолейцин. Способствует усвоению клетками глюкозы, придает мышцам силу и выносливость. Помогает тканям и эпидермису быстрее регенерироваться, поэтому ткани быстрее восстанавливаются после травм.
к содержанию ↑

Вывод

Аминокислоты необходимы спортсменам и обычным людям. Эти вещества выполняют множество важных функций в человеческом организме. Аминокислоты помогают похудеть, поскольку регулируют обмен веществ и обеспечивают правильную работу пищеварительной системы.

Важность аминокислот для спортсменов невозможно переоценить. При нехватке аминокислот сложно представить прирост мышечной массы, эффективный тренировочный процесс и восстановление после травм.

Аминокислоты присутствуют в большинстве традиционных продуктов питания, а также выпускаются и в виде биодобавок. Вещества безопасны для употребления и не взывают привыкания и негативных побочных действий. 

 

тирозин — полезные свойства, применение аминокислоты

L тирозин – это оптически изомерная форма ароматической аминокислоты – тирозина. Вещество участвует в липидном обмене, регулирует аппетит, улучшает синтез меланина, нормализует работу надпочечников, гипофиза, щитовидной железы.

Аминокислота L тирозин относится к заменимым, так как вырабатывается в организме. Недостаток частично компенсируется с белковой пищей. Впервые соединение было обнаружено в сыре немецким ученым Либихом. Тирозин нужен для построения молекул белка во всех тканях, входит в состав ферментов, может частично заменять молекулярные сшивки при недостатке других веществ в организме.

Синтез и роль в организме

Для образования тирозина необходим фенилаланин – незаменимая аминокислота, без которой синтез невозможен.

Фенилаланин нужен для строения белковых соединений, а весь его неизрасходованный остаток превращается в тирозин. Таким образом, при дефиците вещества-предшественника наступает дефицит тирозина.

При участии L тирозина происходит выработка гормонов в надпочечниках и щитовидной железе. При ферментативном преобразовании происходит выработка пигмента кожи и волос – меланина.

Надпочечники под действием тирозина вырабатывают гормоны катехоламинной группы: адреналин, норадреналин, допамин. Это нейромедиаторы, управляющие работой нервной системы, стимулирующие работу мозга, улучшающие прохождение нервных импульсов. При увеличении физических нагрузок выработка катехоламинов усиливается, это дает возможность организму адаптироваться. Чем быстрее эндокринная система реагирует на нагрузки, выделяя в кровь нужные вещества, тем легче справляется сердечно-сосудистая система и мышцы:

  • Адреналин – вырабатывается при сильном стрессе или резких физических порывах. При этом увеличивается проницаемость стенок клеток, ускоряется распад жиров и углеводов для получения большего количества энергии. Выносливость организма в этот период увеличивается.

  • Норадреналин – секретируется в моменты агрессии, стресса, продолжительной тяжелой физической работе, ранениях. Усиливает мышечную выносливость, сужает сосуды.

  • Допамин – улучшает усвоение глюкозы в тканях, стимулирует клеточное питание, сужает сосуды, вызывает ощущение удовольствия. Принимает участие в образовании гормона роста.

В щитовидной железе тирозин необходим для синтеза тиреоидных гормонов – тироксина и трийодотиронина. Это йодированные аминокислоты, необходимые для нормального роста и развития тканей, нормальной психической активности, регуляции метаболизма и поддержания нормальной температуры тела. Вещества этой группы повышают чувствительность организма к гормонам надпочечников.

Влияние на системы организма

Нормализация концентрации L тирозина влияет на работу всех систем организма:

  • Сердечно-сосудистая. Соединение помогает регулировать артериальное давление, снижается риск гипертонии, улучшается тонус сосудов, питание на клеточном уровне. Снижается частота и интенсивность вегето-сосудистых спазмов, укрепляется сердечная мышца.

  • Нервная. L тирозин усиливает адаптивность к психологическим и физическим нагрузкам, стимулирует работу мозга, повышает концентрацию, помогает бороться с депрессией и последствиями стрессов.

  • Эндокринная. При участии тирозина происходит синтез гормонов в щитовидной железе, надпочечниках, гипофизе, половых железах у мужчин и женщин. Нормальная их работа поддерживает когнитивные, двигательные функции, регулирует обмен веществ, помогает формировать правильный иммунный ответ на разные виды возбудителей.

  • Метаболизм. Под действием вещества усиливается распад жиров и нормализуется углеводный обмен. Это приводит к уменьшению аппетита и утилизации липидных отложений.

Избыток тирозина приводит к резкому похудению, бессоннице, рассеянному вниманию, повышенной возбудимости. Это состояние связано с повышенной концентрацией гормонов щитовидной железы и требует коррекции.

Ежедневная минимальная потребность взрослого человека составляет 60 мг, а при высоких нагрузках, выраженной декомпенсации или в стрессовой ситуации расход может увеличиться до 4 г.

Последствия дефицита

Недостаточная концентрация L тирозина может привести к снижению концентрации, потере выносливости, апатии, а при длительном дефиците возникают:

  • Отечность, сонливость, сухость кожных покровов, бледность, набор лишнего веса. При этом повышается риск атеросклероза, гипертонии.

  • Нарушение работы печени, почек. На первом этапе перестает усваиваться глюкоза, клетки испытывают недостаток питания, угнетается работа выводящей системы.

Пищевые источники

Несмотря на то, что L тирозин синтезируется нашим организмом при участии фенилаланина, чаще всего этого количества недостаточно для нормальной работы всех систем. Компенсировать недостаток частично помогает употребление в пищу таких продуктов, как:

  • Свинина, говядина, баранина.

  • Курица, индейка, утка.

  • Рыба и морепродукты.

  • Сыры, творог, йогурты, кефир.

  • Орехи, семена подсолнечника, кунжут, бобовые.

Помимо пищевых источников компенсировать недостаток L тирозина можно при приеме добавок к пище в форме капсул, таблеток, пастилок.

БАД с тирозином

Это сбалансированные препараты, которые применяются при таких состояниях, как:

  • ухудшение когнитивных функций, памяти, внимания;

  • потеря работоспособности, выносливости, при постоянной усталости;

  • резкие перепады настроения, депрессивные состояния, фобии.

В детском возрасте препараты назначаются при гиперактивности, повышенной возбудимости, трудности восприятия новой информации. Также L тирозин показан при возрастном нарушении работы мозга и нервной системы. Для усиления эффекта в добавках кроме тирозина присутствует фенилаланин.

Способ применения для каждой добавки указан в инструкции. В большинстве случаев БАД пьют в первой половине дня за час до еды. Запивают водой или соком комнатной температуры. Средняя длительность курса – 30-45 дней.

Побочные действия и противопоказания

Дозировки и длительность приема подбираются специалистами. У препаратов не выявлено побочных действий при соблюдении подобранной схемы.

Возможные противопоказания:

  • Беременность и грудное вскармливание.

  • Гипертиреоз.

  • Гипертония.

  • Прием антидепрессантов на основе ингибиторов моноаминоксидазы.

  • Аллергические реакции на компоненты препарата.

  • Шизофрения.

Если начало приема добавок с L тирозином совпало с появлением других симптомов, прием рекомендуется прекратить и обратиться за консультацией к врачу.

Аминокислоты для спорта: для чего нужны и какие лучше

Аминокислоты для спортсменов – что это такое?

Для того чтобы разобраться в том, нужны ли вообще аминокислоты в спорте, следует понять, что же из себя представляют эти спортивные добавки. Если ограничиться коротким определением, без углубления в химические термины, то аминокислоты – это то, из чего состоят абсолютно любые белки в человеческом теле. Когда в организм попадает белковая пища, то при переваривании она распадается на аминокислоты, которые обеспечивают стабильную работу всех жизненно важных систем и органов.  

Впрочем, уникальными этот тип органических соединений делает еще один факт – наличие атомов азота. Присутствие такого компонента наделяет аминокислоты поистине потрясающими функциями – они помогают в строительстве мягких тканей, мышечных волокон, кожного покрова, а также волосяных луковиц и ногтей. 

Скажем больше: от того, в каком количестве в вашем организме присутствуют аминокислоты, будет в целом зависеть ваше психологическое состояние, настроение, состояние иммунной системы и даже то количество жира, что присутствует в теле.

При этом самостоятельно организм синтезирует 20 заменимых кислот и еще порядка 10 получает только вместе с пищей или иных источников.

Зачем нужны аминокислоты спортсменам

Безусловно, одна из важнейших и основных функций аминокислот для спорта, объясняющая для чего эти добавки нужны мужчинам и женщинам, заключается в их потрясающей способности стимулировать процессы мышечного роста, а также помогать в восстановлении после тренировочного процесса и уменьшении мышечной усталости.  Но только этим дело не ограничивается. Начало тренировочного процесса сопряжено с тем, что в организме протекают биохимические реакции, сопровождаемые выделением промежуточных веществ, провоцирующих появление усталости. Справиться с этим эффектом помогает, к примеру, такая аминокислота как L-Glutamin (глутамин), выступающая в роли источника подпитки и дополнительной энергии для организма.

Именно поэтому добавление аминокислот для спорта будет актуальным не только для тех, кто работает над качеством мышечной структуры. Аминокислоты обязательно должны быть в рационе всех людей, придерживающихся активного образа жизни, независимо от того, профессиональный это вид спорта или любительский для поддержания физической формы.

Если вы спросите, для чего нужны аминокислоты в спорте женщинам, которые вроде не особо заинтересованы в наращивании мышечной массы,  то ответом станет еще одна важная функция этой добавки. Дело в том, что аминокислоты помогают избавляться от лишней жировой прослойки в организме, а значит, способствуют похудению. Так, одно из исследований продемонстрировало, что та группа, в которой женщины придерживались правильного питания с большим содержанием аминокислот,  избавилась от лишних килограммов гораздо быстрее второй.

Какие аминокислоты для спортсменов лучшие?

В одной из наших прошлых статей мы рассказывали о том, как правильно принимать аминокислоты, а также приводили полную классификацию этих добавок, поэтому ограничимся лишь списком аминокислот при занятиях спортом, которые должны быть у каждого:

  • BCAA (БЦАА) – три незаменимые аминокислоты изолейцин, валин и лейцин предотвращают развитие катаболических процессов, помогают наращивать мышечную массу и улучшают качество выполняемой тренировки;
  • L-Glutamin (глютамин) – как мы уже говорили выше, глютамин – это тот самый глоток свежего воздуха, что помогает преодолеть чувство утомления и защитить иммунную систему от перегрузок и инфекционных заболеваний;
  • Creatine monohydrate (креатин моногидрат) – наравне с протеином участвует в построении мускулатуры, избавляет от лишних жировых отложений (что особенно важно для красивого рельефа) и выводит из мышечных тканей лактат;
  • L-carnitine L-tartrate (карнитин тартрат) – любимая женская добавка, активно участвует в беспощадном сжигании лишней жировой прослойки, превращая его в энергию для тренировки.

Что выбрать: аминокислоты или протеин?

Именно такой вопрос довольно часто задают начинающие спортсмены, чтобы выяснить, какой же из этих двух видов спортпита принесет больше пользы. Впрочем, немало и тех, кто желает знать, можно ли совмещать их прием, ведь если аминокислоты – это составные части белка, а протеин и есть белок, то есть ли польза в таком двойном эффекте?

Итак, выбирать между протеином или аминокислотами неправильно. Эти два продукта должны дополнять друг друга, но сразу оговоримся, положительного эффекта можно достигнуть только при правильном употреблении. Организм спортсмена нуждается в белке, а значит, не обойтись без протеина, но для того, чтобы он усвоился, следует добавлять в рацион аминокислоты.

Такой подход позволит добиться значительно лучших результатов, нежели использование только одной или только другой добавки.

Рекомендации экспертов Prime Kraft

Нужно ли добавлять в свой рацион такое спортивное питание, как аминокислоты? Мы считаем, что это, безусловно, важная добавка, которая значительно улучшает не только силовые показатели спортсмена, но и способствуют более эффективному достижению поставленных целей, особенно, если мы говорим о наращивании мышечной массы.

При этом не стоит забывать об элементарных правилах безопасности и четко следовать инструкциям по приему той или иной добавки, которые дают производители. Также не стоит экономить на качестве и выбирать совсем дешевые варианты. Да, вы сбережете  часть денег, но вот для вашего здоровья такая экономия может выйти боком.

Наши спортивные добавки проходят строгий контроль на соответствие всем установленным стандартам, а потому мы совершенно точно уверены, что при грамотном приеме, а также интенсивных занятиях спортом, дополненных правильным питанием, вы точно добьетесь всех поставленных целей.

По промокоду BLOG в официальном интернет-магазине primekraft.ru скидка на весь ассортимент 10%! Доставка по всей России.

Аминокислоты для детоксикации

Мы, славяне, любим погулять. А потом спохватиться и начать рьяно заботиться о здоровье, особенно – о печени. Последнее время в наших широтах для «реинкарнации» гепатоцитов широко используются средства на основе аминокислот, в частности, препараты аргинина глутамата и глицина.

Эти лекарственные средства можно обнаружить в разделе «Белки и аминокислоты, Гепатопротекторы». Часть из них относится и к ноотропам, что дополнительно внушает потребителю веру в их действие и оптимизм: при похмелье нелишне взбодрить не только гепатоциты, но и нейроны. Самые просвещенные принимают такие средства загодя – накануне возлияний – с целью предупредить или хотя бы смягчить алкогольную интоксикацию.

Таурин – от слова «бык»

Интересно, что аминокислотные препараты и добавки популярны также и среди владельцев кошек и собак. Правда, для братьев наших меньших важнее особая аминокислота – таурин, она для них является незаменимой (то есть организм этих животных не синтезирует ее самостоятельно, таурин они получают с едой, например из говядины). От таурина зависит здоровье сердечной мышцы как собак, так и кошек.

В гуманной медицине тоже применяются препараты таурина, в основном в офтальмологии: эта серосодержащая аминокислота, образующаяся в организме в процессе превращения цистеина, действует как стабилизатор клеточного метаболизма при дистрофических поражениях сетчатки глаза.


«Очищаются» и «защищаются» от метаболитов этанола при алкогольной интоксикации наши пациенты в основном тремя аминокислотами – аргинином, метионином и глицином. И это в никоей мере не противоречит инструкции ни к одному из данных лекарств. Однако действие ОТС-препаратов вряд ли назовешь прозрачным: тот же аргинин – всего-навсего алифатическая и частично-заменимая α-аминокислота, одна из базовых компонент все протеинов, из которого состоит как человек, так и его пища. Трудно представить, как добавка на основе ее левоизомера, принятая перорально, помогает пережить алкогольную интоксикацию, или, тем более – восстановить несчастные гепатоциты при циррозе или алкогольном гепатозе.

Популярные аминокислоты для лечения печени

Что ж, придется обратиться к доказательной медицине и сверить «по букве» заявленное фармакотерапевтическое действие этих активных и позитивных аминокислот с результатами клинических исследований. Понятно, что это достаточно кропотливая работа, но разобраться стоит.

(Не)заменимые?

Как ми помним из курса биологии, аминокислоты делятся на условные группы:

  • незаменимые – организм человека не способен синтезировать их самостоятельно, а может получать только с пищей;
  • условно незаменимые – синтезируются в организме, но в недостаточных количествах.
  • заменимые – организм может синтезировать их сам и в достатке.

Из рассматриваемых в статье трех аминокислот незаменим для человека только метионин.


Arg

Итак, заявлено, что аргинин участвует процессах нейтрализации и детоксикации аммиака, который образуется в результате обмена азотистых веществ: за счет выведения аммиака из организма снижается общая интоксикация. Данная аминокислота используется для «детокса» по большей части не соло, а в виде аргинин глутамата – соединения основной аминокислоты аргинина и глутаминовой кислоты с нейромедиаторными свойствами (Arg+Glu).

Как объясняется в инструкции, при алкогольной интоксикации аргинин стимулирует утилизацию этанола в печени, предупреждая ингибирование алкогольдегидрогеназы (ключевого фермента, расщепляющего этанол). Помимо этих благих дел аргинин ускоряет связывание и выведение токсических продуктов метаболизма этанола из-за лкогольной интоксикации за счет увеличения образования янтарной кислоты. Помогает аргинину (и пациенту) глутаминовая кислота – снижает «депрессивное» влияние алкоголя на ЦНС.

Аргинин широко рекламируется как активный компонент диетических добавок для бодибилдеров и спортсменов с целью улучшения питания мышечной ткани. Если верить производителям, почти так же позитивно действует и аргинина аспартат (Arginine aspartate) – диетическая добавка, рекомендуемая при астенических состояниях.

К сожалению, подтверждений этому не нашлось – исследования в этом направлении если и проводились, то не публиковались в авторитетных источниках. То есть достоверно неизвестно, обладает ли аргинина глутамат заявленными гепатопротекторными свойствами и нормализует ли он обменные процессы в гепатоцитах. Публикации отечественных авторов на эту тему выглядят, мягко говоря, неубедительно: в них не описывается даже дизайн исследований, заключения даются сугубо умозрительно

Западных ученых эффекты аргинина глутамата интересуют совсем в другом контексте: в качестве консервантов. Оказывается, этот дуэт положительно влияет на жизнеспособность клеток в композиции перспективных терапевтических агентов, моноклональных антител. Про печень – ни слова.

Gly

Глицин выполняет в организме млекопитающих несколько важных физиологических функций, среди которых самые значимые – роль прекурсора биосинтеза и роль нейротрансмиттера. А как фармакотерапевтический агент глицин на самом деле оказался полезным и «для нервов», и «для печени».

Глицин – известный регулятор метаболических процессов в ЦНС, на самом деле подтвердивший свою нейромедиаторную активность, причем неоднократно. Глицин нормализует процессы возбуждения и торможения, повышает умственную работоспособность, устраняет депрессивные нарушения, повышенную раздражительность за счет чего даже способен смягчать симптоматику расстройств сна. Что касается «главного фильтра», то еще 10 лет назад в исследовании Dietary glycine blunts liver injury after bile duct ligation in rats, проводившемся на крысах, были получены данные, которые свидетельствуют о том, что глицин значительно уменьшает повреждение печени. Как заявили авторы этой работы, глицин, скорее всего, оказывает прямое воздействие на гепатоциты. Их результаты согласуются с данными другого исследования, The Effect of Dietary Glycine on the Hepatic Tumor Promoting Activity of Polychlorinated Biphenyls (PCBs) in Rats, подтверждающего гепатотпротекторные свойства глицина.

Размер не имеет значения

Глицин представляет собой самую маленькую и единственную ахиральную (оптически неактивную) α-аминокислоту с простой формулой h3NCh3COOH.

Несмотря на относительно недавнее открытие в 1820 году, глицин, возможно, иметь самую длинную историю исследований в качестве биохимического объекта. Например, неоднократно предпринимались попытки провести рекогносцировку химической эволюции. Ученые пытались воспроизвести, как в глубоком космосе могли образовываться органические молекулы, в которых в лаборатории было получено несколько так называемых пребиотических молекул – и единственной аминокислотой среди них был маленький глицин.

Некоторые авторы считают, что глицина может быть самой древней молекулой, участвующей в развитии жизни на Земле около 3,8 миллиарда лет тому назад.


Гепатопротекторный механизм глицина «расшифровали» ингибирует воспалительные молекулы, потенциально ведущие к фиброзу, а также снижает только недавно. Как объясняется в обзоре Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review, опубликованном в прошлом году, эта аминокислота активность макрофагов в месте воспаления.

Выяснилось также, что глицин нормализует активность печеночных ферментов и, более того, способен оптимизировать липидный профиль, поддерживая целостность мембран гепатоцитов, даже при хроническом употреблении алкоголя. В экспериментах на крысах было также продемонстрировано, что добавки глицина являются превосходным профилактическим средством для снижения уровня алкоголя в крови.

Многие авторы признали, что добавки глицина, предназначенные для приема внутрь, способны предотвращать гепатотоксичные эффекты, обусловленные алкоголем. Однако важным недостатком пероральных добавок глицина является то, что это активное вещество быстро метаболизируется в пищеварительной системе. Исследователи предупредили о том, что глицин нельзя принимать в больших количествах.

Met

Метионин – единственная незаменимая кислота для человека в этом списке – регулирует азотистый баланс, обеспечивает синтез массы существенных соединений и, самое главное, участвует в процессе метилирования ДНК. Забавно, но для производства фармакологических субстанций метионин используется как в виде право- так и левоизомеров, хотя оптически неактивен как раз только вышеупомянутый глицин.

В международной базе медицинских и биологических публикаций PubMed исследований, подтверждающих гепатопротекторное действие метионина не нашлось (в отличие от его модификации, адметионина). Проводились работы, связывающие аномальный метаболизм метионина с алкогольным повреждением печени – патология (фиброгенез) в основном провоцировалась нарушенной антиоксидантной защитой, изменением экспрессии генов. Конечно, эти результаты никоим образом нельзя транслировать в рекомендацию принимать эту аминокислоту внутрь: трудно представить как метионин, пройдя через желудочно-кишечный тракт, начнет отдавать свою метильную группу нуждающимся в ней участкам ДНК и тем самым предотвратит повреждения на генном уровне.

Понятно, что метионин не применяется (и не рекомендуется) как средство монотерапии при серьезных состояниях. И механизм заявленного гепатопротекторного действия препаратов на основе них не объяснен ни в одном исследовании, пусть даже проведенного на животной модели.

Теория «аминокислотной компенсации»

Поводом для клинического использования аминокислот в отечественной медицине стало открытие синдрома эндогенной метаболической интоксикации (СЭМИ): по словам ученых, описавших этот синдром, именно он играет ведущую роль в развитии поражений печени алкогольной этиологии.

Суть общей концепции синдрома эндогенной «метаболической» интоксикации заключается в следующем: в организме пациента, особенно при прогрессирующей патологии печени, существенно извращается ход нормальных биохимических процессов в этом органе. И при таких обстоятельствах в пораженном органе преобладают не синтетические (анаболические), а деградационные (катаболические) процессы. В результате аномальной деструкции протеиновых молекул в печени образуются отсутствующие в норме патологические метаболиты, прежде всего, так называемые среднемолекулярные пептиды – фрагменты разрушенных молекул протеинов длиной от 5-11 аминокислот. Эти среднемолекулярные пептиды токсичны для клеток и тканей, и именно они обусловливают развитие эндогенной метаболической интоксикации.

Публикации относительно релевантности СЭМИ – исключительно авторства постсоветских ученых. Правда, есть косвенные доказательства жизнеспособности этой гипотезы. Например, результаты исследования 2016 года Acute alcohol exposure, acidemia or glutamine administration impacts amino acid homeostasis in ovine maternal and fetal plasma, рассматривавшего явление фетального алкогольного синдрома, действительно, говорят о том, что воздействие алкоголя влияет на гомеостаз аминокислот в организме. Однако нет данных о том, что дополнительное пероральное введение каких либо аминокислот компенсирует этот эффект.

Незаменимая аминокислота триптофан и ее полезные свойства

Незаменимая аминокислота триптофан и ее полезные свойства

Триптофан — протеиногенная аминокислота, входящая в состав белков всех известных живых организмов.  Триптофан существует в виде двух оптических изомеров – D и L, а также в виде рацемата (DL).

Аминокислоты чрезвычайно важны для функционирования организма, поскольку они служат строительными блоками для синтеза белка. Триптофан — одна из девяти незаменимых аминокислот, которые не синтезируются в организме человека, а поступают исключительно из пищевых источников.

Пищевые источник триптофана – мясо индейки и курицы (имейте в виду: темное мясо содержит меньше триптофана, чем светлое мясо), семечки тыквы, кунжут, рыба (сельдь, лосось, скумбрия, сардины), яйца, молоко и молочные продукты, черный шоколад, какао-крупка, тофу и другие продукты из сои.

В организме L-триптофан превращается в серотонин, который помогает контролировать настроение и сон. Серотонин — важный нейротрансмиттер в организме. Снижение уровня серотонина может привести к тому, что у человека возникнут нарушение сна, повысится уровень стресса, возможно нарушение пищевого поведения.  Эмоциональный дисбаланс, ухудшение состояния нервной системы и повышенный риск развития депрессии и симптомов тревоги – также являются последствиями низкого уровня серотонина.

Ряд исследований демонстрирует, что  L-триптофан благотворно  влияет на настроение. Также известно, что биологически активные добавки с L-триптофаном могут помочь в регулировании перепадов настроения, вызванных предменструальным синдромом (ПМС) или предменструальным дисфорическим расстройством (ПМДР). Существует теория, что ПМС или ПМДР связаны с нарушением обработки серотонина в организме. Триптофан необходим для синтеза ниацин (витамина B3). Этот витамин помогает поддерживать оптимальные уровни липидов крови, участвует в преобразовании углеводов в энергию и помогает поддерживать здоровье пищеварительной системы, кожи, волос и глаз.

Для некоторых людей биологически активные добавки, содержащие  триптофан или L-триптофан, могут быть полезны при различных нарушениях сна, поскольку триптофан улучшает засыпание, увеличивает продолжительность и качество сна.

Есть некоторые сведения, что триптофан может улучшить спортивные результаты. Триптофан чрезвычайно важен для нормального роста и развития нервной системы в детском возрасте. Он помогает в созревании мозга ребенка.

Большая часть существующих исследований, посвященных потенциальным возможностям L-триптофана и триптофана, сосредоточена на его влиянии на настроение и обучение. Так, одно исследование показало, что увеличение потребления триптофана с пищей может повлиять на состояние депрессии и настроение здоровых участников. Диета, в которой присутствовал триптофан, приводила к уменьшению депрессивных симптомов и улучшению настроения у людей. Наоборот, люди, которые потребляли меньше триптофана с пищей, проявляли более высокий уровень раздражения и тревожности. Другое исследование показало, что употребление L-триптофан улучшает распознавание эмоций у женщин. Биологически активные добавки L-триптофана также были изучены с точки зрения их влияния на уровень выносливости при выполнении физических упражнений. Прием биологически активных добавок, содержащих L-триптофан, увеличивает выносливость и удлиняет время тренировки почти на 50 %.

Прием триптофана может привести к появлению головокружений, сонливости, усталости, крапивнице, тошноте, тахикардии, нарушению координации. Наиболее неблагоприятным побочным эффектом  триптофана является опасное и потенциально смертельное состояние, называемое синдромом эозинофилии-миалгии (СЭМ), которое проявляется повышенной утомляемостью, выраженными болями в мышцах, усиливающимися при движениях, слабостью, также в процесс может вовлекаться миокард, суставы, дыхательная и нервная система.

Биологически активные добавки, содержащие триптофан, также могут взаимодействовать с некоторыми лекарственными средствами, такими как антидепрессанты. Триптофан нужно использовать с осторожностью при циррозе печени.

Хотя биологически активные добавки, содержащие триптофан, зарекомендовали себя довольно хорошо, перед их применением необходимо проконсультироваться с врачом, учитывая возможные неблагоприятные последствия. Лучший способ получать достаточно триптофана – использовать в своем питании продукты, богатые им.

 

Источник: https://www.webmd.com/

Вся правда о растительном белке

Белки – это основа основ нашего организма. Они участвуют в росте клеток и мышечной ткани, влияют на правильную работу иммунной, нервной и обменной систем. Поэтому получать протеин мы должны в необходимом количестве. В зависимости от веса женщине требуется от 46 г белков в день, а мужчине от 56 г.

Что такое белки и какими они бывают?


Белки – совокупность аминокислот. Когда мы говорим о том, чем полезен белок, в действительности мы говорим о пользе аминокислот. Белок для них лишь упаковка. Для нормальной жизнедеятельности человеку постоянно необходимы 20 различных аминокислот. Они бывают незаменимые – те, которые организм сам не вырабатывает и которые попадают в него только с пищей. Их 8: фенилаланин, лизин, треонин, метионин, валин, лейцин, триптофан, изолейтин. Есть еще гистидин, но эта аминокислота незаменимая только у детей, с возрастом организм начинает синтезировать ее самостоятельно. Поэтому часто ее называют условно-незаменимой.
Заменимые аминокислоты организм синтезирует самостоятельно или усваивает из продуктов питания. Их 11: аланин, аргинин, аспарагин, глутамат, глутамин, карнитин, глицин, орнитин, пролин, серин и таурин.


Протеомика – научное направление в биологии, которое изучает белки. Термин протеин ввел в 1928 году шведский химик Йёнс Якоб Берцелиус. Это производное от греческого слова proteos, что в переводе означает «самое важное».

Белки бывают животного и растительного происхождения. На протяжении ХХ века в научных кругах не утихали споры, не навредит ли человеку отказ от животной пищи. Один лагерь утверждал, что отказаться никак невозможно. Потому что именно белки животного происхождения считаются полноценными: в их составе можно найти все незаменимые аминокислоты.
Второй лагерь приводил в доказательство пример самых сильных животных на земле: носорогов, бегемотов и слонов. Они питаются только растительной пищей, а значит, получают исключительно растительные протеины. Согласитесь, выглядят они абсолютно здоровыми существами.
Да, в растительной пище сразу все незаменимые аминокислоты не найти, но если рацион разнообразный, в нем сочетаются бобовые, злаки, овощи и фрукты, то человек будет обеспечен всем необходимым.

Важно! Незаменимыми аминокислоты называются потому, что они не синтезируются организмом. А не потому, что их нельзя заменить.

Наверняка, как это обычно и бывает, истина где-то посередине. И для полноценного функционирования надо употреблять оба вида белка. Но бывает, что человек по каким-то причинам полностью или частично отказывается от животного белка. Сознательно, если переходит на вегетарианский или веганский тип питания. Или вынужденно, если этого требуют медицинские показания. И, конечно, многие не употребляют животный белок во время Поста.

В чем польза растительного белка?


– В растительных продуктах, содержащих большое количество протеинов, также много и клетчатки. Она влияет на работу кишечника и состав его микрофлоры, выводит токсины и холестерин, нормализует уровень глюкозы, создает чувство сытости.
– Растительные белки усваиваются быстрее и легче, чем животные, и не перегружают организм. Знакомо чувство, когда на обед вы съели сочный стейк и вам хочется поспать? Это ваш организм бросил все силы на переваривание мяса, для чего нужно четыре часа. Организму все равно, что до окончания рабочего дня еще далеко.
– Растительная пища богата витаминами, микро и макроэлементами, некоторых из которых в продуктах животного происхождения даже попросту нет.
– В растительной пище нет насыщенных жиров и холестерина, которые особо опасны для людей с избыточным весом и болезнями сердечно-сосудистой системы.

В чем вред растительного белка?

Переход полностью на постный белок далеко не всегда бывает безопасным для организма. Не стоит забывать, что большинство из нас живет в бешеном ритме и бесконечно испытывает стресс. Часто отказ от продуктов животного происхождения вызывает анемию. Кожа и волосы тоже могут пострадать. Конечно, бывает аллергия и на определенные продукты, содержащие растительный белок.

Откуда получать растительный белок?


Чемпион по содержанию растительного белка (36% на 100 г) и практически всего списка аминокислот – это соя. Из незаменимых в ней отсутствует только метионин. Не зря тофу, сыр из соевого молока, называют мясом без костей. Добавляйте его в салаты, гарниры и в выпечку.
На втором месте прочно утвердились бобовые. Так же, как и соя, они считаются наиболее полноценной заменой мясу. В арахисе – 25 г, в красной фасоли, маше и желтой чечевице его 24 г, в зеленой чечевице и в черной фасоли – 22 г, в горохе и в красной чечевице – 20 г, в нуте – 19 г. Бобовые популярны в блюдах всех кухонь мира. Вы тоже можете совершить увлекательное кулинарное путешествие, приготовив марокканский суп, итальянскую лазанью из цукини с чечевицей и эстрагоном, закуску из красной фасоли по-грузински, мексиканское гуакомоле с красной фасолью на кукурузных чипсах или карпатские голубцы с картопляниками, фасолью и грибами в томатном соусе.


Бернард Шоу был вегатарианцем. Когда ему исполнилось 70 лет, в интервью его спросили, как он себя чувствует. Он ответил, что прекрасно и было бы еще лучше, если бы ему не докучали врачи, которые обещали ему скорую смерть, если он не будет есть мяса. На аналогичный вопрос журналиста через двадцать лет обладавший великолепным чувством юмора писатель ответил: «Чувствую себя превосходно! Вы знаете, все врачи, которые утверждали, что я умру, если не буду есть мяса, — сами давно уже умерли, так что меня теперь никто уже не беспокоит!»

На одной строчке с бобовыми находятся и орехи – в них белка не меньше. В кешью и миндале – 20 г, в грецких – 12 г. В них много витаминов и минералов, и они подходят диабетикам, так как имеют низкий гликемический индекс. Но надо помнить, что можно поправиться, если есть орехи, не зная меры: они весьма калорийны. Несколько орехов утром в кашу или днем в салат будут отличным источником протеина. А еще орехи можно употреблять в качестве перекуса в течение дня.
Злаковые и продукты из них: овсянка, гречка, рис, перловка, киноа, булгур, кус-кус – награждаются бронзой за третье место. В них 10-12 г белка. И здесь же с 9 г кукуруза. Также из злаковых организм получает медленные углеводы и клетчатку.
Зеленые овощи, конечно, не могут тягаться с бобовыми и орехами по содержанию белков, однако белки в них есть – и для овощей вполне в хорошем количестве. Зеленый горошек – 5 г, брокколи и шпинат – 3 г, авокадо и спаржа – 2 г. Ну а витаминами, если будете есть много зеленых овощей, вы обогатитесь по полной.
Чтобы получить больше белка, готовьте блюда, где используется два и более представителя зеленых овощей. Например, шпинат с брокколи, булгур со спаржей и зеленым горошком, теплый салат из дикого риса, брокколи, авокадо и кедровыми орехами.

Что еще надо знать о белке

Суточная доза белка может быть получена из разных продуктов. Не стоит съедать килограмм брокколи. Как минимум это скучно. Человеку важно получить не просто определенное количество протеинов. Нам требуется именно аминокислоты. Питайтесь разнообразно – и тогда вы получите идеальный комплекс аминокислот. Допустим отсутствующие аминокислоты в рисе вы найдете в бобовых. Диетологи вообще советуют соединять в блюде бобовые и злаки – так они лучше усваиваются.
Исторически индейцы питались маисом, бобовыми и рисом, кавказские народы – фасолью и мамалыгой (кукурузной кашей), а японцы и китайцы – рисом и соей. И все эти народы славились прекрасной физической формой.

Биохимия, незаменимые аминокислоты — StatPearls

Введение

Незаменимые аминокислоты, также известные как незаменимые аминокислоты, представляют собой аминокислоты, которые люди и другие позвоночные не могут синтезировать из промежуточных продуктов метаболизма. Эти аминокислоты должны поступать из экзогенной диеты, потому что в организме человека отсутствуют метаболические пути, необходимые для синтеза этих аминокислот. [1] [2] В питании аминокислоты подразделяются на незаменимые и несущественные. Эти классификации возникли в результате ранних исследований питания человека, которые показали, что определенные аминокислоты необходимы для роста или азотного баланса, даже когда имеется достаточное количество альтернативных аминокислот.[3] Хотя возможны вариации в зависимости от метаболического состояния человека, общепринято считать, что существует девять незаменимых аминокислот, включая фенилаланин, валин, триптофан, треонин, изолейцин, метионин, гистидин, лейцин и лизин. Мнемоника PVT TIM HaLL («частный Тим Холл») — это широко используемый прибор для запоминания этих аминокислот, поскольку он включает первую букву всех незаменимых аминокислот. Что касается питания, девять незаменимых аминокислот можно получить из одного полноценного белка.Полноценный белок по определению содержит все незаменимые аминокислоты. Полноценные белки обычно получают из источников питания животного происхождения, за исключением сои. [4] [5] Незаменимые аминокислоты также доступны из неполноценных белков, которые обычно представляют собой продукты растительного происхождения. Термин «ограничивающая аминокислота» используется для описания незаменимой аминокислоты, присутствующей в пищевом белке в наименьшем количестве по сравнению с эталонным пищевым белком, таким как яичные белки. Термин «ограничивающая аминокислота» может также относиться к незаменимой аминокислоте, которая не отвечает минимальным требованиям для человека.[6]

Fundamentals

Аминокислоты являются основными строительными блоками белков, и они служат азотистыми скелетами для таких соединений, как нейротрансмиттеры и гормоны. В химии аминокислота — это органическое соединение, которое содержит функциональные группы как амино (-Nh3), так и карбоновой кислоты (-COOH), отсюда и название аминокислота. Белки — это длинные цепи или полимеры определенного типа аминокислоты, известной как альфа-аминокислота. Альфа-аминокислоты уникальны, потому что функциональные группы амино и карбоновых кислот разделены только одним атомом углерода, который обычно является хиральным углеродом.В этой статье мы сосредоточимся исключительно на альфа-аминокислотах, из которых состоят белки. [7] [8]

Белки представляют собой цепочки аминокислот, которые собираются через амидные связи, известные как пептидные связи. Разница в группе боковой цепи или R-группе определяет уникальные свойства каждой аминокислоты. Затем уникальность различных белков определяется тем, какие аминокислоты они содержат, как эти аминокислоты расположены в цепи, и другими сложными взаимодействиями, которые цепь осуществляет с собой и с окружающей средой.Эти полимеры аминокислот способны производить разнообразие, наблюдаемое в жизни.

Существует около 20 000 уникальных генов, кодирующих белок, ответственных за более чем 100 000 уникальных белков в организме человека. Хотя в природе встречаются сотни аминокислот, для производства всех белков, содержащихся в организме человека и в большинстве других форм жизни, необходимо всего около 20 аминокислот. Все эти 20 аминокислот представляют собой L-изомер, альфа-аминокислоты. Все они, кроме глицина, содержат хиральный альфа-углерод.И все эти аминокислоты являются L-изомерами с R-абсолютной конфигурацией, за исключением глицина (без хирального центра) и цистеина (S-абсолютная конфигурация из-за серосодержащей R-группы). Следует упомянуть, что аминокислоты селеноцистеин и пирролизин считаются 21-й и 22-й аминокислотами соответственно. Это недавно открытые аминокислоты, которые могут включаться в белковые цепи во время синтеза рибосомных белков. Пирролойзин жизненно важен; однако люди не используют пирролизин для синтеза белка.После трансляции эти 22 аминокислоты также могут быть модифицированы посредством посттрансляционной модификации, чтобы добавить дополнительное разнообразие в генерацию белков. [8]

От 20 до 22 аминокислот, которые составляют белки, включают:

Из этих 20 аминокислот девять аминокислот являются незаменимыми:

  • Фенилаланин

  • Валин

  • Триптофан

  • Треонин

  • Изолейцин

  • Метионин

  • Гистидин

  • Лейцин

  • Лизин

Незаменимые, также известные как незаменимые аминокислоты, можно исключить из рациона.Организм человека может синтезировать эти аминокислоты, используя только незаменимые аминокислоты. Для большинства физиологических состояний здорового взрослого человека указанные выше девять аминокислот являются единственными незаменимыми аминокислотами. Однако такие аминокислоты, как аргинин и гистидин, можно считать условно незаменимыми, поскольку организм не может синтезировать их в достаточных количествах в течение определенных физиологических периодов роста, включая беременность, рост в подростковом возрасте или восстановление после травмы [9].

Механизм

Хотя для синтеза белка человека требуется двадцать аминокислот, люди могут синтезировать только половину этих необходимых строительных блоков.У людей и других млекопитающих есть только генетический материал, необходимый для синтеза ферментов, обнаруженных в путях биосинтеза заменимых аминокислот. Вероятно, есть эволюционное преимущество в удалении длинных путей, необходимых для синтеза незаменимых аминокислот с нуля. Потеряв генетический материал, необходимый для синтеза этих аминокислот, и полагаясь на окружающую среду, чтобы обеспечить эти строительные блоки, эти организмы могут снизить расход энергии, особенно при репликации своего генетического материала.Эта ситуация дает преимущество в выживании; однако это также создает зависимость от других организмов в отношении материалов, необходимых для синтеза белка. [10] [11] [12]

Клиническая значимость

Классификация незаменимых и заменимых аминокислот была впервые представлена ​​в исследованиях питания, проведенных в начале 1900-х годов. Одно исследование (Rose 1957) показало, что человеческое тело способно поддерживать азотный баланс при диете, состоящей только из восьми аминокислот. [13] Эти восемь аминокислот были первой классификацией незаменимых аминокислот или незаменимых аминокислот.В это время ученые смогли идентифицировать незаменимые аминокислоты, проведя исследования кормления очищенными аминокислотами. Исследователи обнаружили, что, когда они исключили из рациона отдельные незаменимые аминокислоты, субъекты не смогли бы расти или поддерживать азотный баланс. Более поздние исследования показали, что некоторые аминокислоты являются «условно незаменимыми» в зависимости от метаболического состояния субъекта. Например, хотя здоровый взрослый может синтезировать тирозин из фенилаланина, у маленького ребенка может не развиться необходимый фермент (фенилаланингидроксилаза) для осуществления этого синтеза, и поэтому они не смогут синтезировать тирозин из фенилаланина, что делает тирозин незаменимым продуктом. незаменимая аминокислота в этих условиях.Эта концепция также появляется при различных болезненных состояниях. По сути, отклонения от стандартного метаболического состояния здорового взрослого человека могут привести организм в такое метаболическое состояние, при котором для баланса азота требуется больше, чем стандартные незаменимые аминокислоты. В целом, оптимальное соотношение незаменимых и заменимых аминокислот требует баланса, зависящего от физиологических потребностей, которые различаются у разных людей. Поиск оптимального соотношения аминокислот в общем парентеральном питании при заболеваниях печени или почек является хорошим примером различных физиологических состояний, требующих различного потребления питательных веществ.Следовательно, термины «незаменимые аминокислоты» и «заменимые аминокислоты» могут вводить в заблуждение, поскольку все аминокислоты могут быть необходимы для обеспечения оптимального здоровья. [1]

При состояниях недостаточного потребления незаменимых аминокислот, таких как рвота или низкий аппетит, могут появиться клинические симптомы. Эти симптомы могут включать депрессию, беспокойство, бессонницу, утомляемость, слабость, задержку роста у молодых и т. Д. Эти симптомы в основном вызваны недостаточным синтезом белка в организме из-за нехватки незаменимых аминокислот.Необходимое количество аминокислот необходимо для выработки нейромедиаторов, гормонов, роста мышц и других клеточных процессов. Эти недостатки обычно присутствуют в более бедных частях мира или у пожилых людей, которым не уделяется должного ухода [2].

Квашиоркор и маразм — примеры более серьезных клинических расстройств, вызванных недоеданием и недостаточным потреблением незаменимых аминокислот. Квашиоркор — это форма недоедания, характеризующаяся периферическими отеками, сухим шелушением кожи с гиперкератозом и гиперпигментацией, асцитом, нарушением функции печени, иммунодефицитом, анемией и относительно неизменным составом мышечных белков.Это результат диеты с недостаточным содержанием белка, но достаточным количеством углеводов. Маразм — это форма недоедания, характеризующаяся истощением, вызванным недостатком белка и недостаточным потреблением калорий в целом. [14]

Повышение квалификации / Контрольные вопросы

Рисунок

Родовая структура аминокислот. Внесен и создан Майклом Лопесом, Б.С.

Ссылки

1.
Hou Y, Yin Y, Wu G. Необходимость в питании «незаменимых аминокислот» для животных и людей.Exp Biol Med (Maywood). 2015 август; 240 (8): 997-1007. [Бесплатная статья PMC: PMC4935284] [PubMed: 26041391]
2.
Hou Y, Wu G. Adv Nutr. 01 ноября 2018 г .; 9 (6): 849-851. [Бесплатная статья PMC: PMC6247364] [PubMed: 30239556]
3.
Reeds PJ. Незаменимые и незаменимые аминокислоты для человека. J Nutr. 2000 Июл; 130 (7): 1835С-40С. [PubMed: 10867060]
4.
Le DT, Chu HD, Le NQ. Улучшение питательного качества растительных белков с помощью генной инженерии.Curr Genomics. 2016 июн; 17 (3): 220-9. [Бесплатная статья PMC: PMC4869009] [PubMed: 27252589]
5.
Hoffman JR, Falvo MJ. Белок — какой лучше? J Sports Sci Med. 2004 сентябрь; 3 (3): 118-30. [Бесплатная статья PMC: PMC3
4] [PubMed: 24482589]
6.
Джуд С., Капур А.С., Сингх Р. Аминокислотный состав и химическая оценка качества белка зерновых культур при поражении насекомыми. Растительная еда Hum Nutr. 1995 сентябрь; 48 (2): 159-67. [PubMed: 8837875]
7.
ЛаПелуса А., Кошик Р. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 5 декабря 2020 г. Физиология, белки. [PubMed: 32310450]
8.
Ву Г. Аминокислоты: метаболизм, функции и питание. Аминокислоты. 2009 Май; 37 (1): 1-17. [PubMed: 19301095]
9.
de Koning TJ. Нарушения синтеза аминокислот. Handb Clin Neurol. 2013; 113: 1775-83. [PubMed: 23622400]
10.
Guedes RL, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HA, Ortega JM.Пути биосинтеза аминокислот и ассимиляции азота: большая делеция генома в ходе эволюции эукариот. BMC Genomics. 2011 22 декабря; 12 Дополнение 4: S2. [Бесплатная статья PMC: PMC3287585] [PubMed: 22369087]
11.
D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. биосинтетические гены у бактерий. Эволюция. 2014 сентябрь; 68 (9): 2559-70. [PubMed: 24910088]
12.
Сигенобу С., Ватанабе Х., Хаттори М., Сакаки И., Исикава Х.Последовательность генома внутриклеточного бактериального симбионта тлей Buchnera sp. APS. Природа. 2000, 7 сентября; 407 (6800): 81-6. [PubMed: 10993077]
13.
ROSE WC. Потребности в аминокислотах взрослого человека. Nutr Abstr Rev.1957 июл; 27 (3): 631-47. [PubMed: 13465065]
14.
Benjamin O, Lappin SL. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 19 июля 2020 г., Квашиоркор. [PubMed: 29939653]

Биохимия, незаменимые аминокислоты — StatPearls

Введение

Незаменимые аминокислоты, также известные как незаменимые аминокислоты, представляют собой аминокислоты, которые люди и другие позвоночные не могут синтезировать из промежуточных продуктов метаболизма.Эти аминокислоты должны поступать из экзогенной диеты, потому что в организме человека отсутствуют метаболические пути, необходимые для синтеза этих аминокислот. [1] [2] В питании аминокислоты подразделяются на незаменимые и несущественные. Эти классификации явились результатом ранних исследований питания человека, которые показали, что определенные аминокислоты необходимы для роста или азотного баланса, даже когда имеется достаточное количество альтернативных аминокислот [3]. Хотя возможны вариации в зависимости от метаболического состояния человека, общее мнение состоит в том, что существует девять незаменимых аминокислот, включая фенилаланин, валин, триптофан, треонин, изолейцин, метионин, гистидин, лейцин и лизин.Мнемоника PVT TIM HaLL («частный Тим Холл») — это широко используемый прибор для запоминания этих аминокислот, поскольку он включает первую букву всех незаменимых аминокислот. Что касается питания, девять незаменимых аминокислот можно получить из одного полноценного белка. Полноценный белок по определению содержит все незаменимые аминокислоты. Полноценные белки обычно получают из источников питания животного происхождения, за исключением сои. [4] [5] Незаменимые аминокислоты также доступны из неполноценных белков, которые обычно представляют собой продукты растительного происхождения.Термин «ограничивающая аминокислота» используется для описания незаменимой аминокислоты, присутствующей в пищевом белке в наименьшем количестве по сравнению с эталонным пищевым белком, таким как яичные белки. Термин «ограничивающая аминокислота» может также относиться к незаменимой аминокислоте, которая не отвечает минимальным требованиям для человека. [6]

Основы

Аминокислоты являются основными строительными блоками белков, и они служат азотистыми скелетами для таких соединений, как нейротрансмиттеры и гормоны. В химии аминокислота — это органическое соединение, которое содержит функциональные группы как амино (-Nh3), так и карбоновой кислоты (-COOH), отсюда и название аминокислота.Белки — это длинные цепи или полимеры определенного типа аминокислоты, известной как альфа-аминокислота. Альфа-аминокислоты уникальны, потому что функциональные группы амино и карбоновых кислот разделены только одним атомом углерода, который обычно является хиральным углеродом. В этой статье мы сосредоточимся исключительно на альфа-аминокислотах, из которых состоят белки. [7] [8]

Белки представляют собой цепочки аминокислот, которые собираются через амидные связи, известные как пептидные связи. Разница в группе боковой цепи или R-группе определяет уникальные свойства каждой аминокислоты.Затем уникальность различных белков определяется тем, какие аминокислоты они содержат, как эти аминокислоты расположены в цепи, и другими сложными взаимодействиями, которые цепь осуществляет с собой и с окружающей средой. Эти полимеры аминокислот способны производить разнообразие, наблюдаемое в жизни.

Существует около 20 000 уникальных генов, кодирующих белок, ответственных за более чем 100 000 уникальных белков в организме человека. Хотя в природе встречаются сотни аминокислот, для производства всех белков, содержащихся в организме человека и в большинстве других форм жизни, необходимо всего около 20 аминокислот.Все эти 20 аминокислот представляют собой L-изомер, альфа-аминокислоты. Все они, кроме глицина, содержат хиральный альфа-углерод. И все эти аминокислоты являются L-изомерами с R-абсолютной конфигурацией, за исключением глицина (без хирального центра) и цистеина (S-абсолютная конфигурация из-за серосодержащей R-группы). Следует упомянуть, что аминокислоты селеноцистеин и пирролизин считаются 21-й и 22-й аминокислотами соответственно. Это недавно открытые аминокислоты, которые могут включаться в белковые цепи во время синтеза рибосомных белков.Пирролойзин жизненно важен; однако люди не используют пирролизин для синтеза белка. После трансляции эти 22 аминокислоты также могут быть модифицированы посредством посттрансляционной модификации, чтобы добавить дополнительное разнообразие в генерацию белков. [8]

От 20 до 22 аминокислот, которые составляют белки, включают:

Из этих 20 аминокислот девять аминокислот являются незаменимыми:

  • Фенилаланин

  • Валин

  • Триптофан

  • Треонин

  • Изолейцин

  • Метионин

  • Гистидин

  • Лейцин

  • Лизин

Незаменимые, также известные как незаменимые аминокислоты, можно исключить из рациона.Организм человека может синтезировать эти аминокислоты, используя только незаменимые аминокислоты. Для большинства физиологических состояний здорового взрослого человека указанные выше девять аминокислот являются единственными незаменимыми аминокислотами. Однако такие аминокислоты, как аргинин и гистидин, можно считать условно незаменимыми, поскольку организм не может синтезировать их в достаточных количествах в течение определенных физиологических периодов роста, включая беременность, рост в подростковом возрасте или восстановление после травмы [9].

Механизм

Хотя для синтеза белка человека требуется двадцать аминокислот, люди могут синтезировать только половину этих необходимых строительных блоков.У людей и других млекопитающих есть только генетический материал, необходимый для синтеза ферментов, обнаруженных в путях биосинтеза заменимых аминокислот. Вероятно, есть эволюционное преимущество в удалении длинных путей, необходимых для синтеза незаменимых аминокислот с нуля. Потеряв генетический материал, необходимый для синтеза этих аминокислот, и полагаясь на окружающую среду, чтобы обеспечить эти строительные блоки, эти организмы могут снизить расход энергии, особенно при репликации своего генетического материала.Эта ситуация дает преимущество в выживании; однако это также создает зависимость от других организмов в отношении материалов, необходимых для синтеза белка. [10] [11] [12]

Клиническая значимость

Классификация незаменимых и заменимых аминокислот была впервые представлена ​​в исследованиях питания, проведенных в начале 1900-х годов. Одно исследование (Rose 1957) показало, что человеческое тело способно поддерживать азотный баланс при диете, состоящей только из восьми аминокислот. [13] Эти восемь аминокислот были первой классификацией незаменимых аминокислот или незаменимых аминокислот.В это время ученые смогли идентифицировать незаменимые аминокислоты, проведя исследования кормления очищенными аминокислотами. Исследователи обнаружили, что, когда они исключили из рациона отдельные незаменимые аминокислоты, субъекты не смогли бы расти или поддерживать азотный баланс. Более поздние исследования показали, что некоторые аминокислоты являются «условно незаменимыми» в зависимости от метаболического состояния субъекта. Например, хотя здоровый взрослый может синтезировать тирозин из фенилаланина, у маленького ребенка может не развиться необходимый фермент (фенилаланингидроксилаза) для осуществления этого синтеза, и поэтому они не смогут синтезировать тирозин из фенилаланина, что делает тирозин незаменимым продуктом. незаменимая аминокислота в этих условиях.Эта концепция также появляется при различных болезненных состояниях. По сути, отклонения от стандартного метаболического состояния здорового взрослого человека могут привести организм в такое метаболическое состояние, при котором для баланса азота требуется больше, чем стандартные незаменимые аминокислоты. В целом, оптимальное соотношение незаменимых и заменимых аминокислот требует баланса, зависящего от физиологических потребностей, которые различаются у разных людей. Поиск оптимального соотношения аминокислот в общем парентеральном питании при заболеваниях печени или почек является хорошим примером различных физиологических состояний, требующих различного потребления питательных веществ.Следовательно, термины «незаменимые аминокислоты» и «заменимые аминокислоты» могут вводить в заблуждение, поскольку все аминокислоты могут быть необходимы для обеспечения оптимального здоровья. [1]

При состояниях недостаточного потребления незаменимых аминокислот, таких как рвота или низкий аппетит, могут появиться клинические симптомы. Эти симптомы могут включать депрессию, беспокойство, бессонницу, утомляемость, слабость, задержку роста у молодых и т. Д. Эти симптомы в основном вызваны недостаточным синтезом белка в организме из-за нехватки незаменимых аминокислот.Необходимое количество аминокислот необходимо для выработки нейромедиаторов, гормонов, роста мышц и других клеточных процессов. Эти недостатки обычно присутствуют в более бедных частях мира или у пожилых людей, которым не уделяется должного ухода [2].

Квашиоркор и маразм — примеры более серьезных клинических расстройств, вызванных недоеданием и недостаточным потреблением незаменимых аминокислот. Квашиоркор — это форма недоедания, характеризующаяся периферическими отеками, сухим шелушением кожи с гиперкератозом и гиперпигментацией, асцитом, нарушением функции печени, иммунодефицитом, анемией и относительно неизменным составом мышечных белков.Это результат диеты с недостаточным содержанием белка, но достаточным количеством углеводов. Маразм — это форма недоедания, характеризующаяся истощением, вызванным недостатком белка и недостаточным потреблением калорий в целом. [14]

Повышение квалификации / Контрольные вопросы

Рисунок

Родовая структура аминокислот. Внесен и создан Майклом Лопесом, Б.С.

Ссылки

1.
Hou Y, Yin Y, Wu G. Необходимость в питании «незаменимых аминокислот» для животных и людей.Exp Biol Med (Maywood). 2015 август; 240 (8): 997-1007. [Бесплатная статья PMC: PMC4935284] [PubMed: 26041391]
2.
Hou Y, Wu G. Adv Nutr. 01 ноября 2018 г .; 9 (6): 849-851. [Бесплатная статья PMC: PMC6247364] [PubMed: 30239556]
3.
Reeds PJ. Незаменимые и незаменимые аминокислоты для человека. J Nutr. 2000 Июл; 130 (7): 1835С-40С. [PubMed: 10867060]
4.
Le DT, Chu HD, Le NQ. Улучшение питательного качества растительных белков с помощью генной инженерии.Curr Genomics. 2016 июн; 17 (3): 220-9. [Бесплатная статья PMC: PMC4869009] [PubMed: 27252589]
5.
Hoffman JR, Falvo MJ. Белок — какой лучше? J Sports Sci Med. 2004 сентябрь; 3 (3): 118-30. [Бесплатная статья PMC: PMC3
4] [PubMed: 24482589]
6.
Джуд С., Капур А.С., Сингх Р. Аминокислотный состав и химическая оценка качества белка зерновых культур при поражении насекомыми. Растительная еда Hum Nutr. 1995 сентябрь; 48 (2): 159-67. [PubMed: 8837875]
7.
ЛаПелуса А., Кошик Р. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 5 декабря 2020 г. Физиология, белки. [PubMed: 32310450]
8.
Ву Г. Аминокислоты: метаболизм, функции и питание. Аминокислоты. 2009 Май; 37 (1): 1-17. [PubMed: 19301095]
9.
de Koning TJ. Нарушения синтеза аминокислот. Handb Clin Neurol. 2013; 113: 1775-83. [PubMed: 23622400]
10.
Guedes RL, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HA, Ortega JM.Пути биосинтеза аминокислот и ассимиляции азота: большая делеция генома в ходе эволюции эукариот. BMC Genomics. 2011 22 декабря; 12 Дополнение 4: S2. [Бесплатная статья PMC: PMC3287585] [PubMed: 22369087]
11.
D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. биосинтетические гены у бактерий. Эволюция. 2014 сентябрь; 68 (9): 2559-70. [PubMed: 24910088]
12.
Сигенобу С., Ватанабе Х., Хаттори М., Сакаки И., Исикава Х.Последовательность генома внутриклеточного бактериального симбионта тлей Buchnera sp. APS. Природа. 2000, 7 сентября; 407 (6800): 81-6. [PubMed: 10993077]
13.
ROSE WC. Потребности в аминокислотах взрослого человека. Nutr Abstr Rev.1957 июл; 27 (3): 631-47. [PubMed: 13465065]
14.
Benjamin O, Lappin SL. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 19 июля 2020 г., Квашиоркор. [PubMed: 29939653]

Биохимия, незаменимые аминокислоты — StatPearls

Введение

Незаменимые аминокислоты, также известные как незаменимые аминокислоты, представляют собой аминокислоты, которые люди и другие позвоночные не могут синтезировать из промежуточных продуктов метаболизма.Эти аминокислоты должны поступать из экзогенной диеты, потому что в организме человека отсутствуют метаболические пути, необходимые для синтеза этих аминокислот. [1] [2] В питании аминокислоты подразделяются на незаменимые и несущественные. Эти классификации явились результатом ранних исследований питания человека, которые показали, что определенные аминокислоты необходимы для роста или азотного баланса, даже когда имеется достаточное количество альтернативных аминокислот [3]. Хотя возможны вариации в зависимости от метаболического состояния человека, общее мнение состоит в том, что существует девять незаменимых аминокислот, включая фенилаланин, валин, триптофан, треонин, изолейцин, метионин, гистидин, лейцин и лизин.Мнемоника PVT TIM HaLL («частный Тим Холл») — это широко используемый прибор для запоминания этих аминокислот, поскольку он включает первую букву всех незаменимых аминокислот. Что касается питания, девять незаменимых аминокислот можно получить из одного полноценного белка. Полноценный белок по определению содержит все незаменимые аминокислоты. Полноценные белки обычно получают из источников питания животного происхождения, за исключением сои. [4] [5] Незаменимые аминокислоты также доступны из неполноценных белков, которые обычно представляют собой продукты растительного происхождения.Термин «ограничивающая аминокислота» используется для описания незаменимой аминокислоты, присутствующей в пищевом белке в наименьшем количестве по сравнению с эталонным пищевым белком, таким как яичные белки. Термин «ограничивающая аминокислота» может также относиться к незаменимой аминокислоте, которая не отвечает минимальным требованиям для человека. [6]

Основы

Аминокислоты являются основными строительными блоками белков, и они служат азотистыми скелетами для таких соединений, как нейротрансмиттеры и гормоны. В химии аминокислота — это органическое соединение, которое содержит функциональные группы как амино (-Nh3), так и карбоновой кислоты (-COOH), отсюда и название аминокислота.Белки — это длинные цепи или полимеры определенного типа аминокислоты, известной как альфа-аминокислота. Альфа-аминокислоты уникальны, потому что функциональные группы амино и карбоновых кислот разделены только одним атомом углерода, который обычно является хиральным углеродом. В этой статье мы сосредоточимся исключительно на альфа-аминокислотах, из которых состоят белки. [7] [8]

Белки представляют собой цепочки аминокислот, которые собираются через амидные связи, известные как пептидные связи. Разница в группе боковой цепи или R-группе определяет уникальные свойства каждой аминокислоты.Затем уникальность различных белков определяется тем, какие аминокислоты они содержат, как эти аминокислоты расположены в цепи, и другими сложными взаимодействиями, которые цепь осуществляет с собой и с окружающей средой. Эти полимеры аминокислот способны производить разнообразие, наблюдаемое в жизни.

Существует около 20 000 уникальных генов, кодирующих белок, ответственных за более чем 100 000 уникальных белков в организме человека. Хотя в природе встречаются сотни аминокислот, для производства всех белков, содержащихся в организме человека и в большинстве других форм жизни, необходимо всего около 20 аминокислот.Все эти 20 аминокислот представляют собой L-изомер, альфа-аминокислоты. Все они, кроме глицина, содержат хиральный альфа-углерод. И все эти аминокислоты являются L-изомерами с R-абсолютной конфигурацией, за исключением глицина (без хирального центра) и цистеина (S-абсолютная конфигурация из-за серосодержащей R-группы). Следует упомянуть, что аминокислоты селеноцистеин и пирролизин считаются 21-й и 22-й аминокислотами соответственно. Это недавно открытые аминокислоты, которые могут включаться в белковые цепи во время синтеза рибосомных белков.Пирролойзин жизненно важен; однако люди не используют пирролизин для синтеза белка. После трансляции эти 22 аминокислоты также могут быть модифицированы посредством посттрансляционной модификации, чтобы добавить дополнительное разнообразие в генерацию белков. [8]

От 20 до 22 аминокислот, которые составляют белки, включают:

Из этих 20 аминокислот девять аминокислот являются незаменимыми:

  • Фенилаланин

  • Валин

  • Триптофан

  • Треонин

  • Изолейцин

  • Метионин

  • Гистидин

  • Лейцин

  • Лизин

Незаменимые, также известные как незаменимые аминокислоты, можно исключить из рациона.Организм человека может синтезировать эти аминокислоты, используя только незаменимые аминокислоты. Для большинства физиологических состояний здорового взрослого человека указанные выше девять аминокислот являются единственными незаменимыми аминокислотами. Однако такие аминокислоты, как аргинин и гистидин, можно считать условно незаменимыми, поскольку организм не может синтезировать их в достаточных количествах в течение определенных физиологических периодов роста, включая беременность, рост в подростковом возрасте или восстановление после травмы [9].

Механизм

Хотя для синтеза белка человека требуется двадцать аминокислот, люди могут синтезировать только половину этих необходимых строительных блоков.У людей и других млекопитающих есть только генетический материал, необходимый для синтеза ферментов, обнаруженных в путях биосинтеза заменимых аминокислот. Вероятно, есть эволюционное преимущество в удалении длинных путей, необходимых для синтеза незаменимых аминокислот с нуля. Потеряв генетический материал, необходимый для синтеза этих аминокислот, и полагаясь на окружающую среду, чтобы обеспечить эти строительные блоки, эти организмы могут снизить расход энергии, особенно при репликации своего генетического материала.Эта ситуация дает преимущество в выживании; однако это также создает зависимость от других организмов в отношении материалов, необходимых для синтеза белка. [10] [11] [12]

Клиническая значимость

Классификация незаменимых и заменимых аминокислот была впервые представлена ​​в исследованиях питания, проведенных в начале 1900-х годов. Одно исследование (Rose 1957) показало, что человеческое тело способно поддерживать азотный баланс при диете, состоящей только из восьми аминокислот. [13] Эти восемь аминокислот были первой классификацией незаменимых аминокислот или незаменимых аминокислот.В это время ученые смогли идентифицировать незаменимые аминокислоты, проведя исследования кормления очищенными аминокислотами. Исследователи обнаружили, что, когда они исключили из рациона отдельные незаменимые аминокислоты, субъекты не смогли бы расти или поддерживать азотный баланс. Более поздние исследования показали, что некоторые аминокислоты являются «условно незаменимыми» в зависимости от метаболического состояния субъекта. Например, хотя здоровый взрослый может синтезировать тирозин из фенилаланина, у маленького ребенка может не развиться необходимый фермент (фенилаланингидроксилаза) для осуществления этого синтеза, и поэтому они не смогут синтезировать тирозин из фенилаланина, что делает тирозин незаменимым продуктом. незаменимая аминокислота в этих условиях.Эта концепция также появляется при различных болезненных состояниях. По сути, отклонения от стандартного метаболического состояния здорового взрослого человека могут привести организм в такое метаболическое состояние, при котором для баланса азота требуется больше, чем стандартные незаменимые аминокислоты. В целом, оптимальное соотношение незаменимых и заменимых аминокислот требует баланса, зависящего от физиологических потребностей, которые различаются у разных людей. Поиск оптимального соотношения аминокислот в общем парентеральном питании при заболеваниях печени или почек является хорошим примером различных физиологических состояний, требующих различного потребления питательных веществ.Следовательно, термины «незаменимые аминокислоты» и «заменимые аминокислоты» могут вводить в заблуждение, поскольку все аминокислоты могут быть необходимы для обеспечения оптимального здоровья. [1]

При состояниях недостаточного потребления незаменимых аминокислот, таких как рвота или низкий аппетит, могут появиться клинические симптомы. Эти симптомы могут включать депрессию, беспокойство, бессонницу, утомляемость, слабость, задержку роста у молодых и т. Д. Эти симптомы в основном вызваны недостаточным синтезом белка в организме из-за нехватки незаменимых аминокислот.Необходимое количество аминокислот необходимо для выработки нейромедиаторов, гормонов, роста мышц и других клеточных процессов. Эти недостатки обычно присутствуют в более бедных частях мира или у пожилых людей, которым не уделяется должного ухода [2].

Квашиоркор и маразм — примеры более серьезных клинических расстройств, вызванных недоеданием и недостаточным потреблением незаменимых аминокислот. Квашиоркор — это форма недоедания, характеризующаяся периферическими отеками, сухим шелушением кожи с гиперкератозом и гиперпигментацией, асцитом, нарушением функции печени, иммунодефицитом, анемией и относительно неизменным составом мышечных белков.Это результат диеты с недостаточным содержанием белка, но достаточным количеством углеводов. Маразм — это форма недоедания, характеризующаяся истощением, вызванным недостатком белка и недостаточным потреблением калорий в целом. [14]

Повышение квалификации / Контрольные вопросы

Рисунок

Родовая структура аминокислот. Внесен и создан Майклом Лопесом, Б.С.

Ссылки

1.
Hou Y, Yin Y, Wu G. Необходимость в питании «незаменимых аминокислот» для животных и людей.Exp Biol Med (Maywood). 2015 август; 240 (8): 997-1007. [Бесплатная статья PMC: PMC4935284] [PubMed: 26041391]
2.
Hou Y, Wu G. Adv Nutr. 01 ноября 2018 г .; 9 (6): 849-851. [Бесплатная статья PMC: PMC6247364] [PubMed: 30239556]
3.
Reeds PJ. Незаменимые и незаменимые аминокислоты для человека. J Nutr. 2000 Июл; 130 (7): 1835С-40С. [PubMed: 10867060]
4.
Le DT, Chu HD, Le NQ. Улучшение питательного качества растительных белков с помощью генной инженерии.Curr Genomics. 2016 июн; 17 (3): 220-9. [Бесплатная статья PMC: PMC4869009] [PubMed: 27252589]
5.
Hoffman JR, Falvo MJ. Белок — какой лучше? J Sports Sci Med. 2004 сентябрь; 3 (3): 118-30. [Бесплатная статья PMC: PMC3
4] [PubMed: 24482589]
6.
Джуд С., Капур А.С., Сингх Р. Аминокислотный состав и химическая оценка качества белка зерновых культур при поражении насекомыми. Растительная еда Hum Nutr. 1995 сентябрь; 48 (2): 159-67. [PubMed: 8837875]
7.
ЛаПелуса А., Кошик Р. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 5 декабря 2020 г. Физиология, белки. [PubMed: 32310450]
8.
Ву Г. Аминокислоты: метаболизм, функции и питание. Аминокислоты. 2009 Май; 37 (1): 1-17. [PubMed: 19301095]
9.
de Koning TJ. Нарушения синтеза аминокислот. Handb Clin Neurol. 2013; 113: 1775-83. [PubMed: 23622400]
10.
Guedes RL, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HA, Ortega JM.Пути биосинтеза аминокислот и ассимиляции азота: большая делеция генома в ходе эволюции эукариот. BMC Genomics. 2011 22 декабря; 12 Дополнение 4: S2. [Бесплатная статья PMC: PMC3287585] [PubMed: 22369087]
11.
D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. биосинтетические гены у бактерий. Эволюция. 2014 сентябрь; 68 (9): 2559-70. [PubMed: 24910088]
12.
Сигенобу С., Ватанабе Х., Хаттори М., Сакаки И., Исикава Х.Последовательность генома внутриклеточного бактериального симбионта тлей Buchnera sp. APS. Природа. 2000, 7 сентября; 407 (6800): 81-6. [PubMed: 10993077]
13.
ROSE WC. Потребности в аминокислотах взрослого человека. Nutr Abstr Rev.1957 июл; 27 (3): 631-47. [PubMed: 13465065]
14.
Benjamin O, Lappin SL. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 19 июля 2020 г., Квашиоркор. [PubMed: 29939653]

Биохимия, незаменимые аминокислоты — StatPearls

Введение

Незаменимые аминокислоты, также известные как незаменимые аминокислоты, представляют собой аминокислоты, которые люди и другие позвоночные не могут синтезировать из промежуточных продуктов метаболизма.Эти аминокислоты должны поступать из экзогенной диеты, потому что в организме человека отсутствуют метаболические пути, необходимые для синтеза этих аминокислот. [1] [2] В питании аминокислоты подразделяются на незаменимые и несущественные. Эти классификации явились результатом ранних исследований питания человека, которые показали, что определенные аминокислоты необходимы для роста или азотного баланса, даже когда имеется достаточное количество альтернативных аминокислот [3]. Хотя возможны вариации в зависимости от метаболического состояния человека, общее мнение состоит в том, что существует девять незаменимых аминокислот, включая фенилаланин, валин, триптофан, треонин, изолейцин, метионин, гистидин, лейцин и лизин.Мнемоника PVT TIM HaLL («частный Тим Холл») — это широко используемый прибор для запоминания этих аминокислот, поскольку он включает первую букву всех незаменимых аминокислот. Что касается питания, девять незаменимых аминокислот можно получить из одного полноценного белка. Полноценный белок по определению содержит все незаменимые аминокислоты. Полноценные белки обычно получают из источников питания животного происхождения, за исключением сои. [4] [5] Незаменимые аминокислоты также доступны из неполноценных белков, которые обычно представляют собой продукты растительного происхождения.Термин «ограничивающая аминокислота» используется для описания незаменимой аминокислоты, присутствующей в пищевом белке в наименьшем количестве по сравнению с эталонным пищевым белком, таким как яичные белки. Термин «ограничивающая аминокислота» может также относиться к незаменимой аминокислоте, которая не отвечает минимальным требованиям для человека. [6]

Основы

Аминокислоты являются основными строительными блоками белков, и они служат азотистыми скелетами для таких соединений, как нейротрансмиттеры и гормоны. В химии аминокислота — это органическое соединение, которое содержит функциональные группы как амино (-Nh3), так и карбоновой кислоты (-COOH), отсюда и название аминокислота.Белки — это длинные цепи или полимеры определенного типа аминокислоты, известной как альфа-аминокислота. Альфа-аминокислоты уникальны, потому что функциональные группы амино и карбоновых кислот разделены только одним атомом углерода, который обычно является хиральным углеродом. В этой статье мы сосредоточимся исключительно на альфа-аминокислотах, из которых состоят белки. [7] [8]

Белки представляют собой цепочки аминокислот, которые собираются через амидные связи, известные как пептидные связи. Разница в группе боковой цепи или R-группе определяет уникальные свойства каждой аминокислоты.Затем уникальность различных белков определяется тем, какие аминокислоты они содержат, как эти аминокислоты расположены в цепи, и другими сложными взаимодействиями, которые цепь осуществляет с собой и с окружающей средой. Эти полимеры аминокислот способны производить разнообразие, наблюдаемое в жизни.

Существует около 20 000 уникальных генов, кодирующих белок, ответственных за более чем 100 000 уникальных белков в организме человека. Хотя в природе встречаются сотни аминокислот, для производства всех белков, содержащихся в организме человека и в большинстве других форм жизни, необходимо всего около 20 аминокислот.Все эти 20 аминокислот представляют собой L-изомер, альфа-аминокислоты. Все они, кроме глицина, содержат хиральный альфа-углерод. И все эти аминокислоты являются L-изомерами с R-абсолютной конфигурацией, за исключением глицина (без хирального центра) и цистеина (S-абсолютная конфигурация из-за серосодержащей R-группы). Следует упомянуть, что аминокислоты селеноцистеин и пирролизин считаются 21-й и 22-й аминокислотами соответственно. Это недавно открытые аминокислоты, которые могут включаться в белковые цепи во время синтеза рибосомных белков.Пирролойзин жизненно важен; однако люди не используют пирролизин для синтеза белка. После трансляции эти 22 аминокислоты также могут быть модифицированы посредством посттрансляционной модификации, чтобы добавить дополнительное разнообразие в генерацию белков. [8]

От 20 до 22 аминокислот, которые составляют белки, включают:

Из этих 20 аминокислот девять аминокислот являются незаменимыми:

  • Фенилаланин

  • Валин

  • Триптофан

  • Треонин

  • Изолейцин

  • Метионин

  • Гистидин

  • Лейцин

  • Лизин

Незаменимые, также известные как незаменимые аминокислоты, можно исключить из рациона.Организм человека может синтезировать эти аминокислоты, используя только незаменимые аминокислоты. Для большинства физиологических состояний здорового взрослого человека указанные выше девять аминокислот являются единственными незаменимыми аминокислотами. Однако такие аминокислоты, как аргинин и гистидин, можно считать условно незаменимыми, поскольку организм не может синтезировать их в достаточных количествах в течение определенных физиологических периодов роста, включая беременность, рост в подростковом возрасте или восстановление после травмы [9].

Механизм

Хотя для синтеза белка человека требуется двадцать аминокислот, люди могут синтезировать только половину этих необходимых строительных блоков.У людей и других млекопитающих есть только генетический материал, необходимый для синтеза ферментов, обнаруженных в путях биосинтеза заменимых аминокислот. Вероятно, есть эволюционное преимущество в удалении длинных путей, необходимых для синтеза незаменимых аминокислот с нуля. Потеряв генетический материал, необходимый для синтеза этих аминокислот, и полагаясь на окружающую среду, чтобы обеспечить эти строительные блоки, эти организмы могут снизить расход энергии, особенно при репликации своего генетического материала.Эта ситуация дает преимущество в выживании; однако это также создает зависимость от других организмов в отношении материалов, необходимых для синтеза белка. [10] [11] [12]

Клиническая значимость

Классификация незаменимых и заменимых аминокислот была впервые представлена ​​в исследованиях питания, проведенных в начале 1900-х годов. Одно исследование (Rose 1957) показало, что человеческое тело способно поддерживать азотный баланс при диете, состоящей только из восьми аминокислот. [13] Эти восемь аминокислот были первой классификацией незаменимых аминокислот или незаменимых аминокислот.В это время ученые смогли идентифицировать незаменимые аминокислоты, проведя исследования кормления очищенными аминокислотами. Исследователи обнаружили, что, когда они исключили из рациона отдельные незаменимые аминокислоты, субъекты не смогли бы расти или поддерживать азотный баланс. Более поздние исследования показали, что некоторые аминокислоты являются «условно незаменимыми» в зависимости от метаболического состояния субъекта. Например, хотя здоровый взрослый может синтезировать тирозин из фенилаланина, у маленького ребенка может не развиться необходимый фермент (фенилаланингидроксилаза) для осуществления этого синтеза, и поэтому они не смогут синтезировать тирозин из фенилаланина, что делает тирозин незаменимым продуктом. незаменимая аминокислота в этих условиях.Эта концепция также появляется при различных болезненных состояниях. По сути, отклонения от стандартного метаболического состояния здорового взрослого человека могут привести организм в такое метаболическое состояние, при котором для баланса азота требуется больше, чем стандартные незаменимые аминокислоты. В целом, оптимальное соотношение незаменимых и заменимых аминокислот требует баланса, зависящего от физиологических потребностей, которые различаются у разных людей. Поиск оптимального соотношения аминокислот в общем парентеральном питании при заболеваниях печени или почек является хорошим примером различных физиологических состояний, требующих различного потребления питательных веществ.Следовательно, термины «незаменимые аминокислоты» и «заменимые аминокислоты» могут вводить в заблуждение, поскольку все аминокислоты могут быть необходимы для обеспечения оптимального здоровья. [1]

При состояниях недостаточного потребления незаменимых аминокислот, таких как рвота или низкий аппетит, могут появиться клинические симптомы. Эти симптомы могут включать депрессию, беспокойство, бессонницу, утомляемость, слабость, задержку роста у молодых и т. Д. Эти симптомы в основном вызваны недостаточным синтезом белка в организме из-за нехватки незаменимых аминокислот.Необходимое количество аминокислот необходимо для выработки нейромедиаторов, гормонов, роста мышц и других клеточных процессов. Эти недостатки обычно присутствуют в более бедных частях мира или у пожилых людей, которым не уделяется должного ухода [2].

Квашиоркор и маразм — примеры более серьезных клинических расстройств, вызванных недоеданием и недостаточным потреблением незаменимых аминокислот. Квашиоркор — это форма недоедания, характеризующаяся периферическими отеками, сухим шелушением кожи с гиперкератозом и гиперпигментацией, асцитом, нарушением функции печени, иммунодефицитом, анемией и относительно неизменным составом мышечных белков.Это результат диеты с недостаточным содержанием белка, но достаточным количеством углеводов. Маразм — это форма недоедания, характеризующаяся истощением, вызванным недостатком белка и недостаточным потреблением калорий в целом. [14]

Повышение квалификации / Контрольные вопросы

Рисунок

Родовая структура аминокислот. Внесен и создан Майклом Лопесом, Б.С.

Ссылки

1.
Hou Y, Yin Y, Wu G. Необходимость в питании «незаменимых аминокислот» для животных и людей.Exp Biol Med (Maywood). 2015 август; 240 (8): 997-1007. [Бесплатная статья PMC: PMC4935284] [PubMed: 26041391]
2.
Hou Y, Wu G. Adv Nutr. 01 ноября 2018 г .; 9 (6): 849-851. [Бесплатная статья PMC: PMC6247364] [PubMed: 30239556]
3.
Reeds PJ. Незаменимые и незаменимые аминокислоты для человека. J Nutr. 2000 Июл; 130 (7): 1835С-40С. [PubMed: 10867060]
4.
Le DT, Chu HD, Le NQ. Улучшение питательного качества растительных белков с помощью генной инженерии.Curr Genomics. 2016 июн; 17 (3): 220-9. [Бесплатная статья PMC: PMC4869009] [PubMed: 27252589]
5.
Hoffman JR, Falvo MJ. Белок — какой лучше? J Sports Sci Med. 2004 сентябрь; 3 (3): 118-30. [Бесплатная статья PMC: PMC3
4] [PubMed: 24482589]
6.
Джуд С., Капур А.С., Сингх Р. Аминокислотный состав и химическая оценка качества белка зерновых культур при поражении насекомыми. Растительная еда Hum Nutr. 1995 сентябрь; 48 (2): 159-67. [PubMed: 8837875]
7.
ЛаПелуса А., Кошик Р. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 5 декабря 2020 г. Физиология, белки. [PubMed: 32310450]
8.
Ву Г. Аминокислоты: метаболизм, функции и питание. Аминокислоты. 2009 Май; 37 (1): 1-17. [PubMed: 19301095]
9.
de Koning TJ. Нарушения синтеза аминокислот. Handb Clin Neurol. 2013; 113: 1775-83. [PubMed: 23622400]
10.
Guedes RL, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HA, Ortega JM.Пути биосинтеза аминокислот и ассимиляции азота: большая делеция генома в ходе эволюции эукариот. BMC Genomics. 2011 22 декабря; 12 Дополнение 4: S2. [Бесплатная статья PMC: PMC3287585] [PubMed: 22369087]
11.
D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. биосинтетические гены у бактерий. Эволюция. 2014 сентябрь; 68 (9): 2559-70. [PubMed: 24910088]
12.
Сигенобу С., Ватанабе Х., Хаттори М., Сакаки И., Исикава Х.Последовательность генома внутриклеточного бактериального симбионта тлей Buchnera sp. APS. Природа. 2000, 7 сентября; 407 (6800): 81-6. [PubMed: 10993077]
13.
ROSE WC. Потребности в аминокислотах взрослого человека. Nutr Abstr Rev.1957 июл; 27 (3): 631-47. [PubMed: 13465065]
14.
Benjamin O, Lappin SL. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 19 июля 2020 г., Квашиоркор. [PubMed: 29939653]

Незаменимые аминокислоты: определение, преимущества и продукты питания

Организму требуется 20 различных аминокислот для поддержания хорошего здоровья и нормального функционирования.Люди должны получать девять из этих аминокислот, называемых незаменимыми аминокислотами, с пищей. Хорошие диетические источники включают мясо, яйца, тофу, сою, гречку, киноа и молочные продукты.

Аминокислоты — это соединения, которые образуют белки. Когда человек ест пищу, содержащую белок, его пищеварительная система расщепляет белок на аминокислоты. Затем организм комбинирует аминокислоты различными способами для выполнения функций организма.

Здоровый организм может производить другие 11 аминокислот, поэтому они обычно не нуждаются в поступлении в организм с пищей.

Аминокислоты укрепляют мышцы, вызывают химические реакции в организме, транспортируют питательные вещества, предотвращают болезни и выполняют другие функции. Дефицит аминокислот может привести к снижению иммунитета, проблемам с пищеварением, депрессии, проблемам с фертильностью, снижению умственной активности, замедлению роста у детей и многим другим проблемам со здоровьем.

Каждая из незаменимых аминокислот играет различную роль в организме, и симптомы дефицита соответственно различаются.

Существует много типов незаменимых аминокислот, в том числе:

Лизин

Лизин играет жизненно важную роль в наращивании мышц, поддержании прочности костей, помощи в восстановлении после травм или хирургических вмешательств, а также в регулировании гормонов, антител и ферментов.Он также может иметь противовирусное действие.

Существует не так много исследований дефицита лизина, но исследование на крысах показывает, что дефицит лизина может приводить к вызванной стрессом тревоге.

Гистидин

Гистидин способствует росту, образованию клеток крови и восстановлению тканей. Он также помогает поддерживать особое защитное покрытие нервных клеток, которое называется миелиновой оболочкой.

В организме гистидин превращается в гистамин, который имеет решающее значение для иммунитета, репродуктивного здоровья и пищеварения.Результаты исследования, в котором приняли участие женщины с ожирением и метаболическим синдромом, показывают, что добавки гистидина могут снизить ИМТ и инсулинорезистентность.

Дефицит может вызвать анемию, а низкий уровень в крови чаще встречается у людей с артритом и заболеванием почек.

Треонин

Треонин необходим для здоровья кожи и зубов, поскольку он входит в состав зубной эмали, коллагена и эластина. Он помогает метаболизму жиров и может быть полезен людям с расстройством желудка, тревожностью и легкой депрессией.

Исследование 2018 года показало, что дефицит треонина у рыб привел к снижению устойчивости этих животных к болезням.

Метионин

Метионин и заменимая аминокислота цистеин играют важную роль в здоровье и эластичности кожи и волос. Метионин также помогает сохранять ногти крепкими. Он способствует правильному всасыванию селена и цинка и удалению тяжелых металлов, таких как свинец и ртуть.

Валин

Валин необходим для умственной концентрации, координации мышц и эмоционального спокойствия.Люди могут использовать добавки валина для роста мышц, восстановления тканей и получения энергии.

Дефицит может вызвать бессонницу и снижение умственной функции.

Изолейцин

Изолейцин помогает при заживлении ран, повышении иммунитета, регуляции уровня сахара в крови и выработке гормонов. Он в основном присутствует в мышечной ткани и регулирует уровень энергии.

Пожилые люди могут быть более подвержены дефициту изолейцина, чем молодые люди. Этот недостаток может вызвать мышечное истощение и тряску.

Лейцин

Лейцин помогает регулировать уровень сахара в крови и способствует росту и восстановлению мышц и костей.Он также необходим для заживления ран и выработки гормона роста.

Дефицит лейцина может вызвать кожную сыпь, выпадение волос и усталость.

Фенилаланин

Фенилаланин помогает организму использовать другие аминокислоты, а также белки и ферменты. Организм превращает фенилаланин в тирозин, который необходим для определенных функций мозга.

Дефицит фенилаланина, хотя и встречается редко, может привести к плохой прибавке в весе у младенцев. Это также может вызвать экзему, усталость и проблемы с памятью у взрослых.

Фенилаланин часто входит в состав искусственного подсластителя аспартама, который производители используют для приготовления диетических газированных напитков. Большие дозы аспартама могут повышать уровень фенилаланина в головном мозге, вызывать беспокойство и нервозность, а также влиять на сон.

Люди с редким генетическим заболеванием, называемым фенилкетонурией (ФКУ), не могут метаболизировать фенилаланин. В результате им следует избегать употребления продуктов с высоким содержанием этой аминокислоты.

Триптофан

Триптофан необходим для нормального роста младенцев и является предшественником серотонина и мелатонина.Серотонин — нейромедиатор, регулирующий аппетит, сон, настроение и боль. Мелатонин также регулирует сон.

Триптофан является седативным средством и входит в состав некоторых снотворных. Одно исследование показывает, что добавление триптофана может улучшить умственную энергию и эмоциональную обработку у здоровых женщин.

Дефицит триптофана может вызвать состояние, называемое пеллагрой, которое может привести к слабоумию, кожной сыпи и проблемам с пищеварением.

Многие исследования показывают, что низкий уровень белка и незаменимых аминокислот влияет на мышечную силу и работоспособность.

Согласно исследованию 2014 года, недостаток незаменимых аминокислот может привести к снижению мышечной массы у пожилых людей.

Дополнительное исследование показывает, что аминокислотные добавки могут помочь спортсменам восстановиться после тренировки.

Раньше врачи считали, что люди должны есть продукты, содержащие все девять незаменимых аминокислот за один прием пищи.

В результате, если человек не ел мясо, яйца, молочные продукты, тофу или другую пищу со всеми незаменимыми аминокислотами, необходимо было комбинировать два или более растительных продукта, содержащих все девять, таких как рис и бобы.

Однако сегодня эта рекомендация иная. Люди, которые придерживаются вегетарианской или веганской диеты, могут получать свои незаменимые аминокислоты из различных растительных продуктов в течение дня, и им не обязательно есть их все вместе за один прием пищи.

Поделиться на Pinterest Человек должен поговорить со своим врачом, прежде чем принимать добавки с незаменимыми аминокислотами.

Хотя 11 аминокислот не являются необходимыми, людям могут потребоваться некоторые из них, если они находятся в состоянии стресса или болеют. В это время организм может быть не в состоянии производить достаточное количество этих аминокислот, чтобы удовлетворить повышенную потребность.Эти аминокислоты являются «условными», что означает, что они могут потребоваться человеку в определенных ситуациях.

Иногда люди могут захотеть принимать добавки с незаменимыми аминокислотами. Лучше сначала посоветоваться с врачом относительно безопасности и дозировки.

Несмотря на то, что дефицит незаменимых аминокислот возможен, большинство людей может получить их в достаточном количестве, соблюдая диету, включающую белок.

Продукты из следующего списка являются наиболее распространенными источниками незаменимых аминокислот:

  • Лизин содержится в мясе, яйцах, сое, черной фасоли, киноа и семенах тыквы.
  • Мясо, рыба, птица, орехи, семена и цельные зерна содержат большое количество гистидина.
  • Творог и зародыши пшеницы содержат большое количество треонина.
  • Метионин содержится в яйцах, зернах, орехах и семенах.
  • Валин содержится в сое, сыре, арахисе, грибах, цельнозерновых и овощах.
  • Изолейцин содержится в мясе, рыбе, птице, яйцах, сыре, чечевице, орехах и семенах.
  • Источниками лейцина являются молочные продукты, соя, фасоль и бобовые.
  • Фенилаланин содержится в молочных продуктах, мясе, птице, сое, рыбе, бобах и орехах.
  • Триптофан содержится в большинстве продуктов с высоким содержанием белка, включая зародыши пшеницы, творог, курицу и индейку.

Это лишь несколько примеров продуктов, богатых незаменимыми аминокислотами. Все продукты, содержащие белок, будь то растительного или животного происхождения, будут содержать по крайней мере некоторые из незаменимых аминокислот.

Потребление незаменимых аминокислот имеет решающее значение для хорошего здоровья.

Ежедневное употребление разнообразных продуктов, содержащих белок, — лучший способ для людей получать достаточное количество незаменимых аминокислот.При современной диете и доступе к большому разнообразию продуктов дефицит редко встречается у людей, которые в целом имеют хорошее здоровье.

Перед приемом пищевых добавок следует всегда проконсультироваться с врачом.

Незаменимые аминокислоты: определение, преимущества и продукты питания

Организму необходимо 20 различных аминокислот для поддержания хорошего здоровья и нормального функционирования. Люди должны получать девять из этих аминокислот, называемых незаменимыми аминокислотами, с пищей. Хорошие диетические источники включают мясо, яйца, тофу, сою, гречку, киноа и молочные продукты.

Аминокислоты — это соединения, которые образуют белки. Когда человек ест пищу, содержащую белок, его пищеварительная система расщепляет белок на аминокислоты. Затем организм комбинирует аминокислоты различными способами для выполнения функций организма.

Здоровый организм может производить другие 11 аминокислот, поэтому они обычно не нуждаются в поступлении в организм с пищей.

Аминокислоты укрепляют мышцы, вызывают химические реакции в организме, транспортируют питательные вещества, предотвращают болезни и выполняют другие функции.Дефицит аминокислот может привести к снижению иммунитета, проблемам с пищеварением, депрессии, проблемам с фертильностью, снижению умственной активности, замедлению роста у детей и многим другим проблемам со здоровьем.

Каждая из незаменимых аминокислот играет различную роль в организме, и симптомы дефицита соответственно различаются.

Существует много типов незаменимых аминокислот, в том числе:

Лизин

Лизин играет жизненно важную роль в наращивании мышц, поддержании прочности костей, помощи в восстановлении после травм или хирургических вмешательств, а также в регулировании гормонов, антител и ферментов.Он также может иметь противовирусное действие.

Существует не так много исследований дефицита лизина, но исследование на крысах показывает, что дефицит лизина может приводить к вызванной стрессом тревоге.

Гистидин

Гистидин способствует росту, образованию клеток крови и восстановлению тканей. Он также помогает поддерживать особое защитное покрытие нервных клеток, которое называется миелиновой оболочкой.

В организме гистидин превращается в гистамин, который имеет решающее значение для иммунитета, репродуктивного здоровья и пищеварения.Результаты исследования, в котором приняли участие женщины с ожирением и метаболическим синдромом, показывают, что добавки гистидина могут снизить ИМТ и инсулинорезистентность.

Дефицит может вызвать анемию, а низкий уровень в крови чаще встречается у людей с артритом и заболеванием почек.

Треонин

Треонин необходим для здоровья кожи и зубов, поскольку он входит в состав зубной эмали, коллагена и эластина. Он помогает метаболизму жиров и может быть полезен людям с расстройством желудка, тревожностью и легкой депрессией.

Исследование 2018 года показало, что дефицит треонина у рыб привел к снижению устойчивости этих животных к болезням.

Метионин

Метионин и заменимая аминокислота цистеин играют важную роль в здоровье и эластичности кожи и волос. Метионин также помогает сохранять ногти крепкими. Он способствует правильному всасыванию селена и цинка и удалению тяжелых металлов, таких как свинец и ртуть.

Валин

Валин необходим для умственной концентрации, координации мышц и эмоционального спокойствия.Люди могут использовать добавки валина для роста мышц, восстановления тканей и получения энергии.

Дефицит может вызвать бессонницу и снижение умственной функции.

Изолейцин

Изолейцин помогает при заживлении ран, повышении иммунитета, регуляции уровня сахара в крови и выработке гормонов. Он в основном присутствует в мышечной ткани и регулирует уровень энергии.

Пожилые люди могут быть более подвержены дефициту изолейцина, чем молодые люди. Этот недостаток может вызвать мышечное истощение и тряску.

Лейцин

Лейцин помогает регулировать уровень сахара в крови и способствует росту и восстановлению мышц и костей.Он также необходим для заживления ран и выработки гормона роста.

Дефицит лейцина может вызвать кожную сыпь, выпадение волос и усталость.

Фенилаланин

Фенилаланин помогает организму использовать другие аминокислоты, а также белки и ферменты. Организм превращает фенилаланин в тирозин, который необходим для определенных функций мозга.

Дефицит фенилаланина, хотя и встречается редко, может привести к плохой прибавке в весе у младенцев. Это также может вызвать экзему, усталость и проблемы с памятью у взрослых.

Фенилаланин часто входит в состав искусственного подсластителя аспартама, который производители используют для приготовления диетических газированных напитков. Большие дозы аспартама могут повышать уровень фенилаланина в головном мозге, вызывать беспокойство и нервозность, а также влиять на сон.

Люди с редким генетическим заболеванием, называемым фенилкетонурией (ФКУ), не могут метаболизировать фенилаланин. В результате им следует избегать употребления продуктов с высоким содержанием этой аминокислоты.

Триптофан

Триптофан необходим для нормального роста младенцев и является предшественником серотонина и мелатонина.Серотонин — нейромедиатор, регулирующий аппетит, сон, настроение и боль. Мелатонин также регулирует сон.

Триптофан является седативным средством и входит в состав некоторых снотворных. Одно исследование показывает, что добавление триптофана может улучшить умственную энергию и эмоциональную обработку у здоровых женщин.

Дефицит триптофана может вызвать состояние, называемое пеллагрой, которое может привести к слабоумию, кожной сыпи и проблемам с пищеварением.

Многие исследования показывают, что низкий уровень белка и незаменимых аминокислот влияет на мышечную силу и работоспособность.

Согласно исследованию 2014 года, недостаток незаменимых аминокислот может привести к снижению мышечной массы у пожилых людей.

Дополнительное исследование показывает, что аминокислотные добавки могут помочь спортсменам восстановиться после тренировки.

Раньше врачи считали, что люди должны есть продукты, содержащие все девять незаменимых аминокислот за один прием пищи.

В результате, если человек не ел мясо, яйца, молочные продукты, тофу или другую пищу со всеми незаменимыми аминокислотами, необходимо было комбинировать два или более растительных продукта, содержащих все девять, таких как рис и бобы.

Однако сегодня эта рекомендация иная. Люди, которые придерживаются вегетарианской или веганской диеты, могут получать свои незаменимые аминокислоты из различных растительных продуктов в течение дня, и им не обязательно есть их все вместе за один прием пищи.

Поделиться на Pinterest Человек должен поговорить со своим врачом, прежде чем принимать добавки с незаменимыми аминокислотами.

Хотя 11 аминокислот не являются необходимыми, людям могут потребоваться некоторые из них, если они находятся в состоянии стресса или болеют. В это время организм может быть не в состоянии производить достаточное количество этих аминокислот, чтобы удовлетворить повышенную потребность.Эти аминокислоты являются «условными», что означает, что они могут потребоваться человеку в определенных ситуациях.

Иногда люди могут захотеть принимать добавки с незаменимыми аминокислотами. Лучше сначала посоветоваться с врачом относительно безопасности и дозировки.

Несмотря на то, что дефицит незаменимых аминокислот возможен, большинство людей может получить их в достаточном количестве, соблюдая диету, включающую белок.

Продукты из следующего списка являются наиболее распространенными источниками незаменимых аминокислот:

  • Лизин содержится в мясе, яйцах, сое, черной фасоли, киноа и семенах тыквы.
  • Мясо, рыба, птица, орехи, семена и цельные зерна содержат большое количество гистидина.
  • Творог и зародыши пшеницы содержат большое количество треонина.
  • Метионин содержится в яйцах, зернах, орехах и семенах.
  • Валин содержится в сое, сыре, арахисе, грибах, цельнозерновых и овощах.
  • Изолейцин содержится в мясе, рыбе, птице, яйцах, сыре, чечевице, орехах и семенах.
  • Источниками лейцина являются молочные продукты, соя, фасоль и бобовые.
  • Фенилаланин содержится в молочных продуктах, мясе, птице, сое, рыбе, бобах и орехах.
  • Триптофан содержится в большинстве продуктов с высоким содержанием белка, включая зародыши пшеницы, творог, курицу и индейку.

Это лишь несколько примеров продуктов, богатых незаменимыми аминокислотами. Все продукты, содержащие белок, будь то растительного или животного происхождения, будут содержать по крайней мере некоторые из незаменимых аминокислот.

Потребление незаменимых аминокислот имеет решающее значение для хорошего здоровья.

Ежедневное употребление разнообразных продуктов, содержащих белок, — лучший способ для людей получать достаточное количество незаменимых аминокислот.При современной диете и доступе к большому разнообразию продуктов дефицит редко встречается у людей, которые в целом имеют хорошее здоровье.

Перед приемом пищевых добавок следует всегда проконсультироваться с врачом.

Незаменимые аминокислоты: определение, преимущества и продукты питания

Организму необходимо 20 различных аминокислот для поддержания хорошего здоровья и нормального функционирования. Люди должны получать девять из этих аминокислот, называемых незаменимыми аминокислотами, с пищей. Хорошие диетические источники включают мясо, яйца, тофу, сою, гречку, киноа и молочные продукты.

Аминокислоты — это соединения, которые образуют белки. Когда человек ест пищу, содержащую белок, его пищеварительная система расщепляет белок на аминокислоты. Затем организм комбинирует аминокислоты различными способами для выполнения функций организма.

Здоровый организм может производить другие 11 аминокислот, поэтому они обычно не нуждаются в поступлении в организм с пищей.

Аминокислоты укрепляют мышцы, вызывают химические реакции в организме, транспортируют питательные вещества, предотвращают болезни и выполняют другие функции.Дефицит аминокислот может привести к снижению иммунитета, проблемам с пищеварением, депрессии, проблемам с фертильностью, снижению умственной активности, замедлению роста у детей и многим другим проблемам со здоровьем.

Каждая из незаменимых аминокислот играет различную роль в организме, и симптомы дефицита соответственно различаются.

Существует много типов незаменимых аминокислот, в том числе:

Лизин

Лизин играет жизненно важную роль в наращивании мышц, поддержании прочности костей, помощи в восстановлении после травм или хирургических вмешательств, а также в регулировании гормонов, антител и ферментов.Он также может иметь противовирусное действие.

Существует не так много исследований дефицита лизина, но исследование на крысах показывает, что дефицит лизина может приводить к вызванной стрессом тревоге.

Гистидин

Гистидин способствует росту, образованию клеток крови и восстановлению тканей. Он также помогает поддерживать особое защитное покрытие нервных клеток, которое называется миелиновой оболочкой.

В организме гистидин превращается в гистамин, который имеет решающее значение для иммунитета, репродуктивного здоровья и пищеварения.Результаты исследования, в котором приняли участие женщины с ожирением и метаболическим синдромом, показывают, что добавки гистидина могут снизить ИМТ и инсулинорезистентность.

Дефицит может вызвать анемию, а низкий уровень в крови чаще встречается у людей с артритом и заболеванием почек.

Треонин

Треонин необходим для здоровья кожи и зубов, поскольку он входит в состав зубной эмали, коллагена и эластина. Он помогает метаболизму жиров и может быть полезен людям с расстройством желудка, тревожностью и легкой депрессией.

Исследование 2018 года показало, что дефицит треонина у рыб привел к снижению устойчивости этих животных к болезням.

Метионин

Метионин и заменимая аминокислота цистеин играют важную роль в здоровье и эластичности кожи и волос. Метионин также помогает сохранять ногти крепкими. Он способствует правильному всасыванию селена и цинка и удалению тяжелых металлов, таких как свинец и ртуть.

Валин

Валин необходим для умственной концентрации, координации мышц и эмоционального спокойствия.Люди могут использовать добавки валина для роста мышц, восстановления тканей и получения энергии.

Дефицит может вызвать бессонницу и снижение умственной функции.

Изолейцин

Изолейцин помогает при заживлении ран, повышении иммунитета, регуляции уровня сахара в крови и выработке гормонов. Он в основном присутствует в мышечной ткани и регулирует уровень энергии.

Пожилые люди могут быть более подвержены дефициту изолейцина, чем молодые люди. Этот недостаток может вызвать мышечное истощение и тряску.

Лейцин

Лейцин помогает регулировать уровень сахара в крови и способствует росту и восстановлению мышц и костей.Он также необходим для заживления ран и выработки гормона роста.

Дефицит лейцина может вызвать кожную сыпь, выпадение волос и усталость.

Фенилаланин

Фенилаланин помогает организму использовать другие аминокислоты, а также белки и ферменты. Организм превращает фенилаланин в тирозин, который необходим для определенных функций мозга.

Дефицит фенилаланина, хотя и встречается редко, может привести к плохой прибавке в весе у младенцев. Это также может вызвать экзему, усталость и проблемы с памятью у взрослых.

Фенилаланин часто входит в состав искусственного подсластителя аспартама, который производители используют для приготовления диетических газированных напитков. Большие дозы аспартама могут повышать уровень фенилаланина в головном мозге, вызывать беспокойство и нервозность, а также влиять на сон.

Люди с редким генетическим заболеванием, называемым фенилкетонурией (ФКУ), не могут метаболизировать фенилаланин. В результате им следует избегать употребления продуктов с высоким содержанием этой аминокислоты.

Триптофан

Триптофан необходим для нормального роста младенцев и является предшественником серотонина и мелатонина.Серотонин — нейромедиатор, регулирующий аппетит, сон, настроение и боль. Мелатонин также регулирует сон.

Триптофан является седативным средством и входит в состав некоторых снотворных. Одно исследование показывает, что добавление триптофана может улучшить умственную энергию и эмоциональную обработку у здоровых женщин.

Дефицит триптофана может вызвать состояние, называемое пеллагрой, которое может привести к слабоумию, кожной сыпи и проблемам с пищеварением.

Многие исследования показывают, что низкий уровень белка и незаменимых аминокислот влияет на мышечную силу и работоспособность.

Согласно исследованию 2014 года, недостаток незаменимых аминокислот может привести к снижению мышечной массы у пожилых людей.

Дополнительное исследование показывает, что аминокислотные добавки могут помочь спортсменам восстановиться после тренировки.

Раньше врачи считали, что люди должны есть продукты, содержащие все девять незаменимых аминокислот за один прием пищи.

В результате, если человек не ел мясо, яйца, молочные продукты, тофу или другую пищу со всеми незаменимыми аминокислотами, необходимо было комбинировать два или более растительных продукта, содержащих все девять, таких как рис и бобы.

Однако сегодня эта рекомендация иная. Люди, которые придерживаются вегетарианской или веганской диеты, могут получать свои незаменимые аминокислоты из различных растительных продуктов в течение дня, и им не обязательно есть их все вместе за один прием пищи.

Поделиться на Pinterest Человек должен поговорить со своим врачом, прежде чем принимать добавки с незаменимыми аминокислотами.

Хотя 11 аминокислот не являются необходимыми, людям могут потребоваться некоторые из них, если они находятся в состоянии стресса или болеют. В это время организм может быть не в состоянии производить достаточное количество этих аминокислот, чтобы удовлетворить повышенную потребность.Эти аминокислоты являются «условными», что означает, что они могут потребоваться человеку в определенных ситуациях.

Иногда люди могут захотеть принимать добавки с незаменимыми аминокислотами. Лучше сначала посоветоваться с врачом относительно безопасности и дозировки.

Несмотря на то, что дефицит незаменимых аминокислот возможен, большинство людей может получить их в достаточном количестве, соблюдая диету, включающую белок.

Продукты из следующего списка являются наиболее распространенными источниками незаменимых аминокислот:

  • Лизин содержится в мясе, яйцах, сое, черной фасоли, киноа и семенах тыквы.
  • Мясо, рыба, птица, орехи, семена и цельные зерна содержат большое количество гистидина.
  • Творог и зародыши пшеницы содержат большое количество треонина.
  • Метионин содержится в яйцах, зернах, орехах и семенах.
  • Валин содержится в сое, сыре, арахисе, грибах, цельнозерновых и овощах.
  • Изолейцин содержится в мясе, рыбе, птице, яйцах, сыре, чечевице, орехах и семенах.
  • Источниками лейцина являются молочные продукты, соя, фасоль и бобовые.
  • Фенилаланин содержится в молочных продуктах, мясе, птице, сое, рыбе, бобах и орехах.
  • Триптофан содержится в большинстве продуктов с высоким содержанием белка, включая зародыши пшеницы, творог, курицу и индейку.

Это лишь несколько примеров продуктов, богатых незаменимыми аминокислотами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *